AUTOMOTIV GRADI COMPLIANT **HALOGEN** FREE ## Vishay General Semiconductor # **High Current Density Surface Mount Schottky Barrier Rectifier** ## TO-277A (SMPC) → Anode 1 | PRIMARY CHARACTERISTICS | | | | | |--|---------------------|--|--|--| | I _{F(AV)} | 2 x 6.0 A | | | | | V _{RRM} | 40 V | | | | | I _{FSM} | 150 A | | | | | E _{AS} | 20 mJ | | | | | V _F at I _F = 6.0 A | 0.40 V | | | | | T _J max. | 125 °C | | | | | Package | TO-277A (SMPC) | | | | | Diode variations | Dual common cathode | | | | ### TYPICAL APPLICATIONS For use in low voltage high frequency inverters, freewheeling, DC/DC converters and polarity protection applications. ### **FEATURES** - Very low profile typical height of 1.1 mm - · Ideal for automated placement - · Low forward voltage drop, low power losses - · High efficiency - · Low thermal impedance - Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C - AEC-Q101 qualified available - Automotive ordering code: base P/NHM3 - Material categorization: For definitions of compliance please see www.vishav.com/doc?99912 ### **MECHANICAL DATA** Case: TO-277A (SMPC) Molding compound meets UL 94 V-0 flammability rating Base P/N-M3 - halogen-free, RoHS-compliant, and commercial grade Base P/NHM3 - halogen-free, RoHS-compliant and AEC-Q101 qualified Base P/NHM3_X - halogen-free, RoHS-compliant and AEC-Q101 qualified ("_X" denotes revision code e.g. A, B,....) Terminals: Matte tin plated leads, solderable per J-STD-002 and JESD 22-B102 M3 suffix meets JESD 201 class 2 whisker test, HM3 suffix meets JESD 201 class 2 whisker test | MAXIMUM RATINGS (T _A = 25 °C unless otherwise noted) | | | | | |---|------------------|----------------------------------|-------------|------| | PARAMETER | | SYMBOL | SS12P4C | UNIT | | Device marking code | | | S124C | | | Maximum repetitive peak reverse voltage | | V _{RRM} | 40 | V | | Maximum average forward rectified current (fig. 1) (1) | total device | | 12 | А | | | per diode | I _{F(AV)} | 6.0 | | | Maximum average forward rectified current (2) total device | | I _{F(AV)} | 3.5 | Α | | Peak forward surge current 10 ms single half sine-wave superimposed on rated load per diode | I _{FSM} | 150 | А | | | Non-repetitive avalanche energy at T _J = 25 °C, L = 60 mH per diode | | E _{AS} | 20 | mJ | | Peak repetitive reverse current at t_p = 2 μ s, 1 kHz, at T_J = 25 °C per diode | | I _{RRM} | 1.0 | А | | Operating junction and storage temperature range | _ | T _{J,} T _{STG} | -55 to +125 | °C | ### **Notes** - (1) Mounted on 30 mm x 30 mm Al PCB with 50 mm x 25 mm x 100 mm fin heat sink - (2) Free air, mounted on recommended copper pad area # Vishay General Semiconductor | ELECTRICAL CHARACTERISTICS (T _A = 25 °C unless otherwise noted) | | | | | | | | |---|----------------------|---|-------------------------------|-------------------------------|------|------|----| | PARAMETER | TEST CONDITIONS | | SYMBOL | TYP. | MAX. | UNIT | | | Instantaneous forward voltage per diode | I _F = 1 A | T _A = 25 °C | V _F ⁽¹⁾ | 0.34 | - | . V | | | | I _F = 3 A | | | 0.40 | - | | | | | I _F = 6 A | | | 0.46 | 0.52 | | | | | I _F = 1 A | T _A = 100 °C | | 0.24 | - | | | | | I _F = 3 A | | | 0.31 | - | | | | | I _F = 6 A | | | 0.40 | 0.45 | | | | Reverse current per diode | Rated V _R | T _A = 25 °C
T _A = 100 °C | T _A = 25 °C | I _R ⁽²⁾ | 129 | 500 | μΑ | | | naieu v _R | | 'R' | 11.9 | 25 | mA | | | Typical junction capacitance per diode | 4.0 V, 1 MHz | | CJ | 400 | - | pF | | ### **Notes** (3) Pulse test: 300 µs pulse width, 1 % duty cycle $^{(4)}$ Pulse test: Pulse width \leq 40 ms | THERMAL CHARACTERISTICS (T _A = 25 °C unless otherwise noted) | | | | | |---|----------------------|-----|------|--| | PARAMETER SYMBOL SS12P4C | | | | | | Typical thermal resistance | R _{0JA} (1) | 100 | °C/W | | | | R _{0JM} (2) | 3 | | | #### Notes - $^{(1)}$ Free air, mounted on recommended copper pad area. Thermal resistance $R_{\theta JA}$ junction to ambient. - (2) Mounted on 30 mm x 30 mm Al PCB with 50 mm x 25 mm x 100 mm fin heat sink. Thermal resistance R_{0,JM} junction to mount. | ORDERING INFORMATION (Example) | | | | | | |--------------------------------|-----------------|------------------------|---------------|------------------------------------|--| | PREFERRED P/N | UNIT WEIGHT (g) | PREFERRED PACKAGE CODE | BASE QUANTITY | DELIVERY MODE | | | SS12P4C-M3/86A | 0.10 | 86A | 1500 | 7" diameter plastic tape and reel | | | SS12P4C-M3/87A | 0.10 | 87A | 6500 | 13" diameter plastic tape and reel | | | SS12P4CHM3/86A (1) | 0.10 | 86A | 1500 | 7" diameter plastic tape and reel | | | SS12P4CHM3/87A (1) | 0.10 | 87A | 6500 | 13" diameter plastic tape and reel | | | SS12P4CHM3_A/H (1) | 0.10 | Н | 1500 | 7" diameter plastic tape and reel | | | SS12P4CHM3_A/I (1) | 0.10 | 1 | 6500 | 13" diameter plastic tape and reel | | ### Note (1) AEC-Q101 qualified ## RATINGS AND CHARACTERISTICS CURVES (T_A = 25 °C unless otherwise noted) Fig. 1 - Maximum Forward Current Derating Curve ### Notes - Mounted on 30 mm x 30 mm Al PCB with 50 mm x 25 mm x 100 mm fin heat sink, T_M measured at the terminal of cathode band (R_{0JM} = 3 °C/W) - Free air, mounted on recommended copper pad area (R_{0,JA} = 100 °C/W) # Vishay General Semiconductor Fig. 2 - Forward Power Loss Characteristics Per Diode Fig. 3 - Typical Instantaneous Forward Characteristics Per Diode Fig. 4 - Typical Reverse Leakage Characteristics Per Diode Fig. 5 - Typical Junction Capacitance Per Diode Fig. 6 - Typical Transient Thermal Impedance Per Diode # Vishay General Semiconductor ### **PACKAGE OUTLINE DIMENSIONS** in inches (millimeters) # **Legal Disclaimer Notice** Vishay ## **Disclaimer** ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.