

General Description

The MAX9505 filters and amplifies standard-definition video signals. Maxim's DirectDrive™ technology eliminates large output-coupling capacitors and sets the video black level to ground. An internal reconstruction filter smoothes the steps and reduces the spikes on the video signal from the video digital-to-analog converter (DAC). The input of the MAX9505 can be directly connected to the output of a DAC. The MAX9505 provides a compact, integrated, and low-power solution.

The reconstruction filter typically has 3dB attenuation at 9MHz and 50dB attenuation at 27MHz, and ±1dB passband flatness to 5.5MHz.

Maxim's DirectDrive uses an integrated charge pump and a linear regulator to create a negative power supply to drive the sync below ground. The charge pump injects so little noise into the video output that the picture is visibly flawless.

The MAX9505 features an internal 1.7Ω analog switch that interfaces with a 4-pole multimedia jack. This switch allows one of the poles to be set as a video input, a video output, or a microphone input.

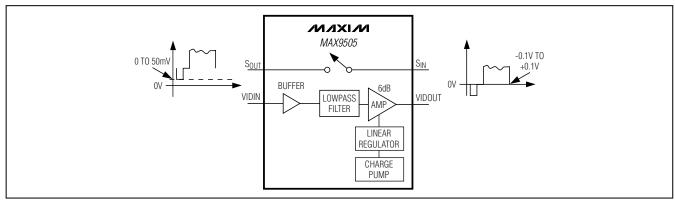
The MAX9505 is offered in space-saving 16-pin QSOP and 16-pin TQFN packages and is specified over the -40°C to +85°C extended temperature range.

Applications

Mobile Phones/Smartphones Space-Constrained, Low-Power Audio/Video Portable Devices

Features

- **♦ DC-Coupled Output**
- Direct Connection to Video DAC
- ♦ Video Output Black Level Set to Ground
- ♦ Video Reconstruction Filter with 50dB Attenuation at 27MHz
- ♦ 6dB Gain
- ♦ 1.7Ω Ron Analog Switch
- ♦ 10nA Shutdown Supply Current
- ♦ 2.7V to 3.6V Single-Supply Operation


Ordering Information

PART*	PIN- PACKAGE	PKG CODE	TOP MARK
MAX9505EEE	16 QSOP	E16-4	_
MAX9505ETE	16 TQFN	T1633-4	ACW

^{*}All devices are specified over the -40°C to +85°C operating temperature range.

Functional Diagram/Typical Operating Circuit and Pin Configurations appear at end of data sheet.

Block Diagram

NIXIN

ABSOLUTE MAXIMUM RATINGS

Vee to COND	0.21/+041/
V _{DD} to SGND	
VIDIN to SGND	0.3V to +4V
BIAS to SGND	0.3V to $(V_{DD} + 0.3V)$
MODE0, MODE1 to SGND	0.3V to +4V
S _{IN} , S _{OUT} , VIDOUT to SGND	(The greater of V _{SS} and -2V)
	to $(V_{DD} + 0.3V)$
CPV _{DD} to CPGND	0.3V to +4V
C1P, C1N, CPV _{SS}	Capacitor Connection Only
CPGND, SGND, GND	0.1V to +0.1V
CPV _{SS} to V _{SS}	0.1V to +0.1V

VIDOUT Short Circuit to VDD, SGND	
and the Greater of (VSS and -2V)	Continuous
Continuous Current	
VIDIN, BIAS, MODE0, MODE1, SIN, SOUT	±20mA
Continuous Power Dissipation ($T_A = +70$ °C)	
16-Pin QSOP (derate 8.3mW/°C above +70°C)	667mW
16-Pin TQFN (derate 15.6mW/°C above +70°C)	1349mW
Operating Temperature Range40	°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range65°	C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DD}=CPV_{DD}=MODE1=3.0V,\ MODE0=SGND=GND=CPGND=0V,\ C1=C2=C3=C4=1\mu F,\ R_{BIAS}=100k\Omega,\ T_A=T_{MIN}\ to\ T_{MAX}.\ R_L=150\Omega$ to SGND, unless otherwise noted. $V_{VIDIN}=286mV,\ gain=6dB.$ Typical values are at $V_{DD}=CPV_{DD}=MODE1=3.0V,\ T_A=+25^{\circ}C,\ unless \ otherwise\ noted.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage Range	V _{DD} , CPV _{DD}	Guaranteed by DC voltage gain and quiescent supply current	2.7		3.6	V
Quiescent Supply Current	I _{DD}	$V_{DD} = 3.6V (I_{DD} = I_{VDD} + I_{CPVDD}, R_L = \infty)$		12	15	mA
Shutdown Supply Current	ISHDN	$V_{DD} = 3.6V (I_{\overline{S}H\overline{D}N} = I_{VDD} + I_{CPVDD}),$ $\overline{S}H\overline{D}N = SGND$		0.01	1	μΑ
Bias Voltage	V _{BIAS}			1		V
VIDEO AMPLIFIER						
Input Voltage Range	V _{RANGE}	Guaranteed by DC voltage gain, VDD = 2.7V	-0.10		+1.05	V
		Guaranteed by DC voltage gain, V _{DD} = 3V	-0.10		+1.28	
Input Current	IIN	V _{DD} = 2.7V	-2.5		+2.5	μΑ
Input Resistance	R _{IN}			1		ΜΩ
DC Voltage Gain (Note 2)	Ay	V _{DD} = 2.7V to 3.6V	5.5	6	6.5	dB
Output Black Level (Note 3)		$V_{DD} = 2.7V$	-0.1	0	+0.1	V
Output Valtage Swing		Guaranteed by DC voltage gain, V _{DD} = 2.7V	2.162			V
Output Voltage Swing		Guaranteed by DC voltage gain, V _{DD} = 3V	2.594			V _{P-P}
Output Short-Circuit Current	Isc	Sinking or sourcing		50		mA
Output Resistance	Rout			0.01		Ω
Shutdown Output Impedance		MODE1 = MODE0 = SGND		4		kΩ
VIDOUT Leakage Current		MODE1 = MODE0 = V _{DD}		0.01		μA
VIDOOT Loakago outroitt		MODE1 = SGND and MODE0 = V _{DD}		0.01		μ/ (

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = CPV_{DD} = MODE1 = 3.0V, MODE0 = SGND = GND = CPGND = 0V, C1 = C2 = C3 = C4 = 1 \mu F, R_{BIAS} = 100 k\Omega, T_A = T_{MIN}$ to T_{MAX} . $R_L = 150\Omega$ to SGND, unless otherwise noted. $V_{VIDIN} = 286 mV$, gain = 6dB. Typical values are at $V_{DD} = CPV_{DD} = MODE1 = 3.0V$, $T_A = +25^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITI	ONS	MIN	TYP	MAX	UNITS
ANALOG SWITCH	•						
On Desistance	Davi	MODE0 = V _{DD} ,	MODE1 = V _{DD}		1.7	4.4	0
On-Resistance	Ron	I _{SIN} = 10mA	MODE1 = SGND		1.2	2.5	Ω
On Decistores Flatness (Note 4)		$MODE0 = V_{DD}$,	MODE1 = V _{DD}		0.5	0.9	0
On-Resistance Flatness (Note 4)		$I_{SIN} = 10$ mA, $V_{DD} = 3$ V	MODE1 = SGND		0.3	0.5	Ω
S _{OUT} Off-Leakage Current (Note 5)		MODE0 = SGND, V _{DD} = 3.3V, V _{SOUT} = 3.3V, 0.3V		-1		+1	nA
S _{IN} On-Leakage Current (Note 5)		MODE0 = V _{DD} , V _{DD} = 3. 3.3V, V _{SOUT} = 3.3V, 0.3V		-1		+1	nA
Turn-On Time		$V_{SIN} = 1.5V$, $R_L = 300\Omega$, Figure 1; $V_{IH} = 1.5V$, V_{IL}	·		35	60	ns
Turn-Off Time		V_{SIN} = 1.5V; R_L = 300 Ω , Figure 1; V_{IH} = 1.5V, V_{IL}	- ' '		50	80	ns
Charge Injection		$V_{GEN} = 1.5V, R_{GEN} = 0.00$ Figure 2	2, C _L = 1nF,		20		рС
Off-Isolation		MODE0 = SGND, $f = 10N$ V _{SOUT} = $1V_{P-P}$, $R_L = 50\Omega$	*		30		dB
OII-ISOIAIIOII		MODE0 = SGND, f = 1M $R_L = 50\Omega$, $C_L = 5pF$	$Hz; V_{SOUT} = 1V_{P-P},$		50		QD.
On-Channel -3dB Bandwidth		$MODE0 = V_{DD}$, signal = $C_L = 5pF$	0dBm, $R_L = 50\Omega$,		200		MHz
Total Harmonic Distortion		$MODE0 = V_{DD}, V_{SIN} = 2$	V_{P-P} , $R_L = 600\Omega$		0.025		%
S _{OUT} Off-Capacitance		MODE0 = SGND, f = 1M	Hz		18		рF
Switch On-Capacitance		$MODE0 = V_{DD}, f = 1MHz$	2		60		рF
CROSSTALK (VIDEO TO AUDIO)							
VIDIN to S _{IN}		MODE1 = MODE0 = V _{DD} 1V _{P-P} at VIDIN), f = 20kHz,		100		dB
VIDOUT to S _{IN}		MODE1 = V _{DD} , MODE0 f = 20kHz, 2V _{P-P} at VIDC	,		85		dB
CHARGE PUMP	•		•				•
Switching Frequency				150	250	300	kHz
LOGIC SIGNALS (MODE0, MODE	:1)						
Logic-Low Threshold	V _{IL}	$V_{DD} = 2.7V \text{ to } 3.6V$				0.5	V
Logic-High Threshold	VIH	$V_{DD} = 2.7V \text{ to } 3.6V$		1.5			V
Logic Input Current	I _{IL}					1	μΑ

AC ELECTRICAL CHARACTERISTICS

 $(V_{DD} = CPV_{DD} = MODE1 = 3.0V, MODE0 = SGND = GND = CPGND = 0V, C1 = C2 = C3 = C4 = 1 \mu F, R_{BIAS} = 100 k\Omega, T_A = T_{MIN}$ to T_{MAX} . $R_L = 150\Omega$ to SGND, unless otherwise noted. $V_{VIDIN} = 286 \text{mV}$, gain = 6dB. Typical values are at $V_{DD} = CPV_{DD} = MODE1 = 3.0V$, $T_A = +25^{\circ}\text{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Passband Flatness		$V_{DD} = 2.7V$, $f = 100kHz$ to 5.5	5MHz	-1	0	+1	dB
Attenuation		V _{DD} = 2.7V, VIDOUT= 2V _{P-P} , attenuation	f = 9.1MHz		3		- dB
7 (toridation		is referred to 100kHz	f = 27MHz	35	50		ab
Power-Supply Rejection Ratio	PSRR	f = 100kHz			62		dB
Output Impedance	Z _{OUT}	f = 5MHz			0.5		Ω
Differential Gain Error	DG	NTSC, VIDOUT = 2V _{P-P}			0.1		%
Differential Phase Error	DP	NTSC, VIDOUT = 2V _{P-P}			0.2		degrees
2T Pulse-to-Bar K Rating		2T = 250ns, bar time is 18µs, 2.5% and the ending 2.5% of are ignored	0 0		-0.3		K%
2T Pulse Response		2T = 250ns			0.3		K%
2T Bar Response		2T = 250ns, bar time is 18µs, 2.5% and the ending 2.5% of are ignored			0.7		K%
Nonlinearity		5-step staircase			0.2		%
Group Delay Distortion	D _{Dt}	100kHz to 5.5MHz			10		ns
VIDOUT Capacitive-Load Stability	CL	V _{OUT} = 2V _{P-P} , no sustained of	scillations		20		рF
Peak Signal-to-RMS Noise	SNR	100kHz to 5.5MHz			64		dB
Enable Time	ton	VIDIN = 0.5V, VIDOUT settled of the final voltage	d to within 1%		0.2		ms
Disable Time	toff	VIDIN = 0.5V, VIDOUT settled of the output voltage	to below 1%	_	0.1	_	ms

- Note 1: All devices are 100% production tested at T_A = +25°C. Specifications over temperature are guaranteed by design.
- Note 2: Voltage gain (Ay) is a two-point measurement in which the output voltage swing is divided by the input voltage swing.
- **Note 3:** With an output load attached, this offset will directly contribute to quiescent current.
- **Note 4:** Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.
- Note 5: Guaranteed by design.

Timing Diagrams

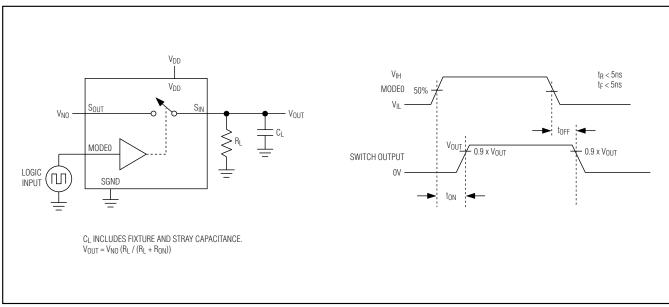


Figure 1. Analog Switch Turn-On/Off Time

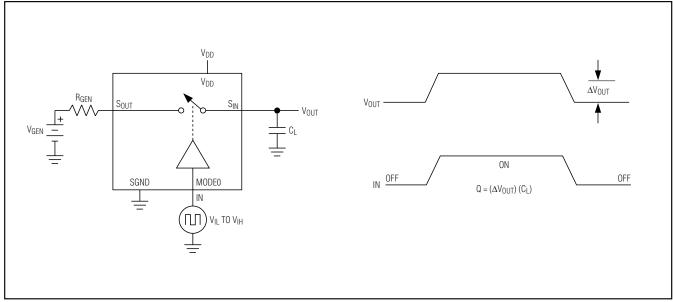
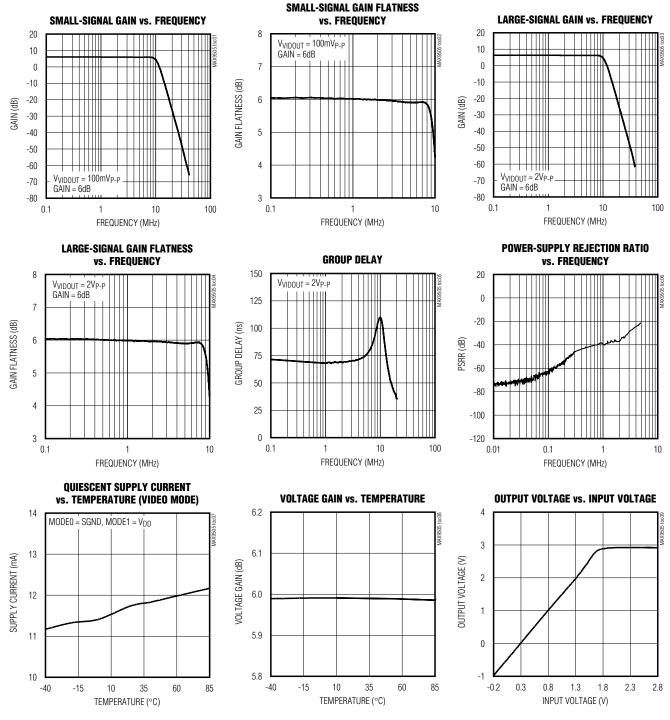
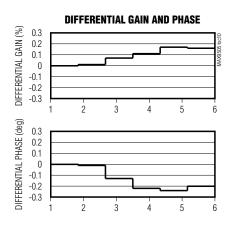
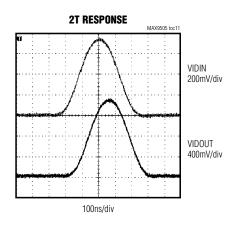
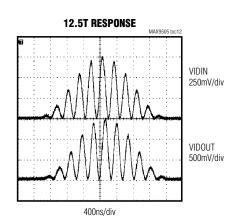
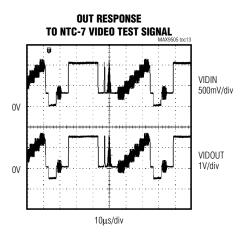



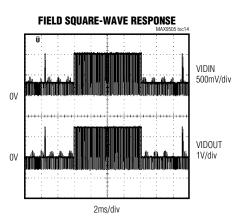
Figure 2. Charge Injection

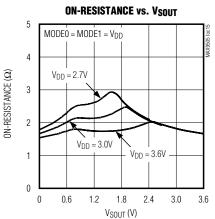

Typical Operating Characteristics

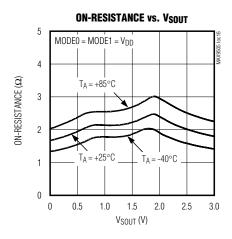

 $(V_{DD}=CPV_{DD}=MODE1=3.0V,\ MODE0=SGND=GND=CPGND=0V,\ no\ load,\ C1=C2=C3=C4=1\mu F,\ R_{BIAS}=100k\Omega,\ T_A=T_{MIN}\ to\ T_{MAX}.\ R_{IN}=150\Omega$ to SGND, unless otherwise noted. $V_{VIDIN}=286mV,\ gain=6dB.$ Typical values are at $T_A=+25^{\circ}C,\ unless$ otherwise noted.)

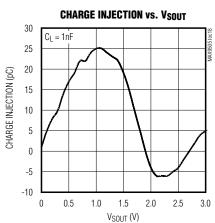


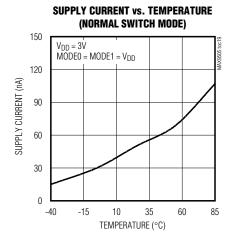

Typical Operating Characteristics (continued)

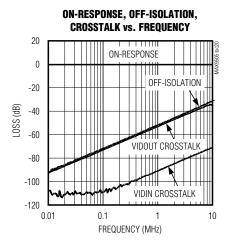

 $(V_{DD}=CPV_{DD}=MODE1=3.0V,\ MODE0=SGND=GND=CPGND=0V,\ no\ load,\ C1=C2=C3=C4=1\mu F,\ R_{BIAS}=100k\Omega,\ T_A=T_{MIN}\ to\ T_{MAX}.\ R_{IN}=150\Omega$ to SGND, unless otherwise noted. $V_{VIDIN}=286mV,\ gain=6dB.$ Typical values are at $T_A=+25^{\circ}C,\ unless$ otherwise noted.)

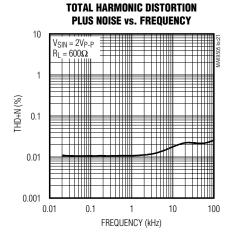







Typical Operating Characteristics (continued)


 $(V_{DD} = CPV_{DD} = MODE1 = 3.0V, MODE0 = SGND = GND = CPGND = 0V, no load, C1 = C2 = C3 = C4 = 1μF, R_{BIAS} = 100kΩ, T_A = T_{MIN}$ to T_{MAX} . $R_{IN} = 150Ω$ to SGND, unless otherwise noted. $V_{VIDIN} = 286$ mV, gain = 6dB. Typical values are at $T_A = +25$ °C, unless otherwise noted.)



Pin Description

Р	IN	NAME	FUNCTION
QSOP	TQFN	NAME	FUNCTION
1	15	V _{SS}	Negative Power Supply. Connect to CPVSS.
2	16	CPVss	Charge-Pump Negative Power Supply. Bypass with a 1µF capacitor to CPGND.
3	1	C1N	Charge-Pump Flying Capacitor Negative Terminal. Connect a 1µF capacitor from C1P to C1N.
4	2	CPGND	Charge-Pump Power Ground
5	3	C1P	Charge-Pump Flying Capacitor Positive Terminal. Connect a 1µF capacitor from C1P to C1N.
6	4	CPV _{DD}	Charge-Pump Positive Power Supply. Bypass with a 1µF capacitor to CPGND.
7	5	BIAS	Common-Mode Voltage. Connect a $100k\Omega$ resistor from BIAS to SGND.
8	6	SGND	Signal Ground. Connect to GND.
9	7	VIDIN	Video Input
10	8	MODE0	Mode Logic Input 0. See Table 1.
11	9	MODE1	Mode Logic Input 1. See Table 1.
12	10	GND	Ground. Connect to SGND.
13	11	V_{DD}	Positive Power Supply. Bypass with a 1µF capacitor to SGND.
14	12	Sout	Analog Switch Output
15	13	VIDOUT	Video Output
16	14	SIN	Analog Switch Input
_	EP	EP	Exposed Paddle. Connect to GND.

Detailed Description

The MAX9505 completely eliminates the need for capacitors in the video output by using Maxim's DirectDrive technology that includes an inverting charge pump and linear regulator. The charge pump and linear regulator create a clean negative supply allowing the amplifier output to swing below ground. The amplifier output can swing both positive and negative so that the video signal black level can be placed at ground. The MAX9505 features a six-pole, Butterworth filter to perform reconstruction filtering on the video input signal from the DAC.

DirectDriveBackground

Integrated video filter/amplifier circuits operating from a single, positive supply usually create video output signals that are level-shifted above ground to keep the signal within the linear range of the output amplifier. For applications in which the positive DC level shift of the video signal is not acceptable, a series capacitor can be inserted in the output connection in an attempt to eliminate the positive DC level shift. The series capacitor cannot truly level shift a video signal because the

average level of the video varies with picture content. The series capacitor biases the video output signal around ground, but the actual level of the video signal can vary significantly depending upon the RC time constant and the picture content.

The series capacitor creates a highpass filter. Since the lowest frequency in video is the frame rate, which can be between 24Hz and 30Hz, the pole of the highpass filter should ideally be an order of magnitude lower in frequency than the frame rate. Therefore, the series capacitor must be very large, typically from $220\mu F$ to $3000\mu F$. For space-constrained equipment, the series capacitor is unacceptable. Changing from a single series capacitor to a SAG network that requires two smaller capacitors can only reduce space and cost slightly.

The series capacitor in the usual output connection also prevents damage to the output amplifier if the connector is shorted to a supply or to ground. While the output connection of the MAX9505 does not have a series capacitor, the MAX9505 will not be damaged if the connector is shorted to a supply or to ground (see the *Short-Circuit Protection* section).

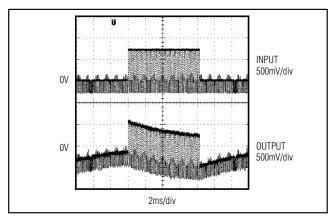


Figure 3. AC-Coupled Output

Video Amplifier

Typically, the black level of the video signal created by the video DAC is around 300mV. The MAX9505 shifts the black level to ground at the output. Therefore, the active video is above ground, and sync is below ground. The amplifier needs a negative supply for its output stage to remain in its linear region when driving sync below ground.

The MAX9505 has an integrated charge pump and linear regulator to create a low-noise negative supply from the positive supply voltage. The charge pump inverts the positive supply to create a raw negative voltage that is then fed into the linear regulator, which outputs -2V. The linear regulator filters out the charge-pump noise.

Comparison Between DirectDrive Output and AC-Coupled Output

The actual level of the video signal varies less with a DirectDrive output than an AC-coupled output. The video signal average can change greatly depending upon the picture content. With an AC-coupled output, the average will change according to the time constant formed by the series capacitor and series resistance (usually 150 Ω). For example, Figure 3 shows an AC-coupled video signal alternating between a completely black screen and a completely white screen. Notice the excursion of the video signal as the screen changes.

With the DirectDrive amplifier, the black level is held at ground. The video signal is constrained between -0.3V to +0.7V. Figure 4 shows the video signal from a DirectDrive amplifier with the same input signal as the AC-coupled system.

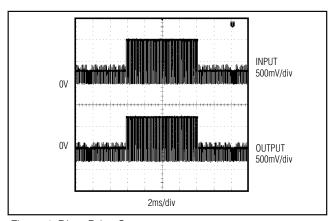


Figure 4. DirectDrive Output

Analog Switch

The MAX9505 features an internal 4.4 Ω (max) analog normally open switch that interfaces with a 4-pole multimedia jack in which one of the poles can be set to a video input, a video output, or a microphone input. The switch has three modes of operation: open, normal switch, and extended range switch. In normal switch mode, the analog range is from 0V to V_{DD}. In extended-range switch mode, the analog range is from -2V to V_{DD}. Logic inputs MODE1 and MODE0 control the analog switch operating modes (Table 1).

Video Reconstruction Filter

Before the video signal from the DAC can be amplified, it must be lowpass filtered to smooth the steps and to reduce the spikes created whenever the DAC output changes value. In the frequency domain, the steps and spikes cause images of the video signal to appear at multiples of the sampling clock. The MAX9505 contains a six-pole Butterworth lowpass filter. The passband extends to 5.5MHz, and the minimum attenuation is 35dB at 27MHz.

Operating Modes

The MAX9505 uses two logic inputs to set the device into one of the following modes: 1) shutdown mode, 2) extended-range switch mode, 3) video output mode, and 4) normal switch mode.

In video output mode, the video circuitry is on, the charge pump is on, and the analog switch is open. In normal switch mode, the analog switch is closed, and the video circuitry and charge pump are off. In the extended-range switch mode, the charge pump is on and the analog switch is closed. Shutdown mode reduces the supply current to 10nA typically (see Table 1 and *Typical Application Circuits*).

Table 1. Operating Modes

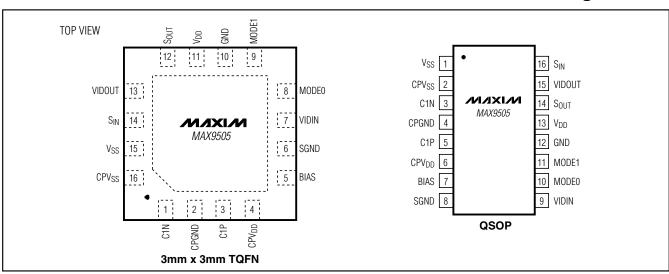
OPERATING MODE	MODE1	MODE0	VIDEO CIRCUIT	CHARGE PUMP	ANALOG SWITCH	COMMENTS
Shutdown Mode	0	0	Off	Off	Open	Video output is $4k\Omega$ and analog switch is open
Extended Range Switch Mode	0	1	Off	On	Closed	Video output is high impedance. Analog switch range is from -2V to VDD.
Video Output Mode	1	0	On	On	Open	Video output is in normal operation. Analog switch is open.
Normal Switch Mode	1	1	Off	Off	Closed	Video output is high impedance. Analog switch range is from SGND to V _{DD} .

Short-Circuit Protection

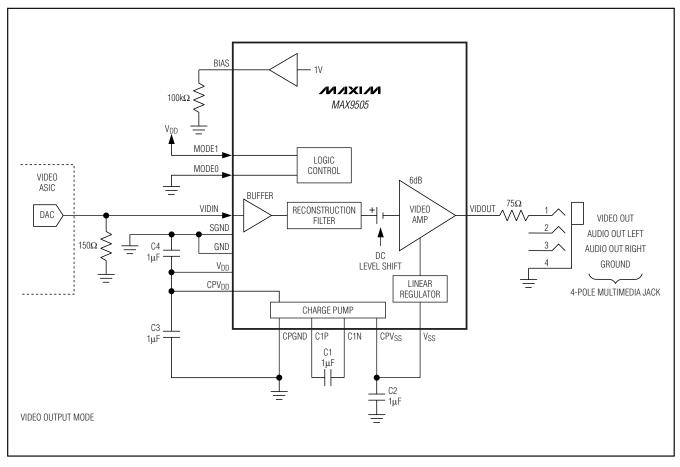
The MAX9505 typical operating circuit includes a 75Ω back-termination resistor that limits short-circuit current if an external short is applied to the video output. The MAX9505 features internal output, short-circuit protection to prevent device damage in prototyping and applications where the amplifier output can be directly shorted.

Shutdown

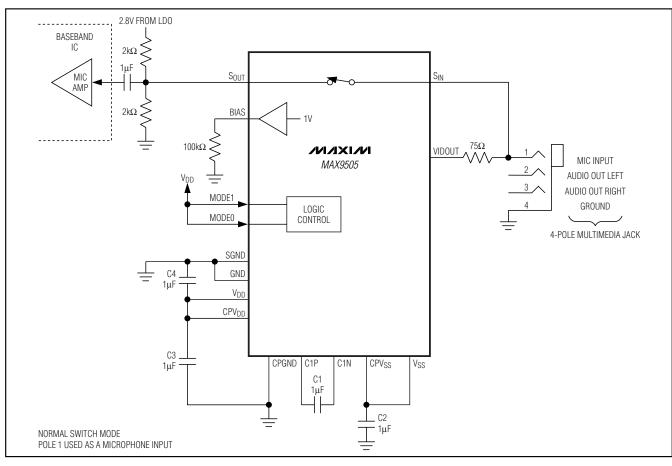
The MAX9505 features a low-power shutdown mode for battery-powered/portable applications. Shutdown reduces the quiescent current to less than 10nA. Setting MODE1 and MODE0 low disables the outputs and places the MAX9505 into a low-power shutdown mode. In shutdown mode the amplifier, charge pump, and linear regulator are turned off and the video output resistance is $4k\Omega$.

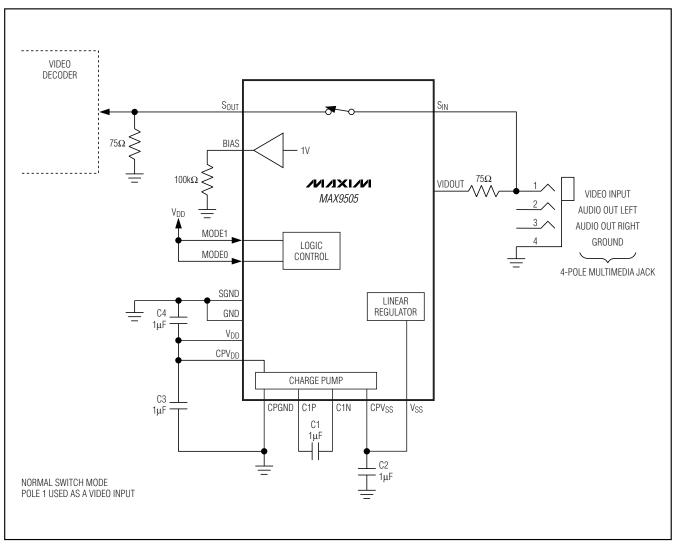

Applications Information

Power-Supply Bypassing and Ground Management


The MAX9505 operates from a 2.7V to 3.6V single supply and requires proper layout and bypassing. For the best performance, place the components as close to the device as possible.

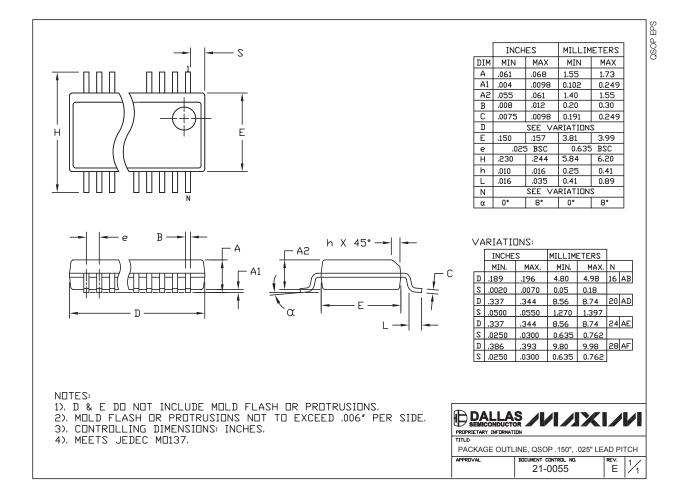
Proper grounding improves performance and prevents any switching noise from coupling into the video signal. Connect GND and SGND together at a single point on the PC board. Route all traces that carry switching transients away from SGND. Return SGND to the lowest impedance ground available. Route CPGND and all traces carrying switching transients away from SGND, GND, and other traces and components in the video signal path. Bypass the analog supply (VDD) with a $1\mu F$ capacitor to SGND, placed as close to the device as possible. Bypass the charge-pump supply (CPVDD) with a $1\mu F$ capacitor to CPGND, placed as close to the device as possible. Connect CPVsS to VsS and bypass with a $1\mu F$ capacitor to CPGND as close to the device as possible.


Pin Configurations


Functional Diagram/Typical Operating Circuits

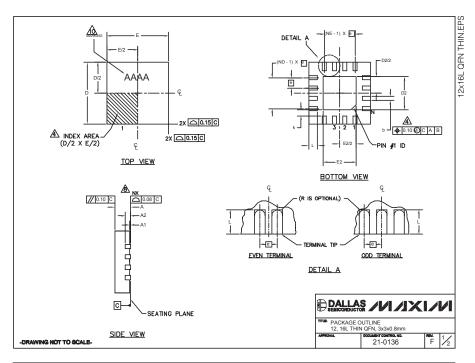
Functional Diagram/Typical Operating Circuits (continued)

Functional Diagram/Typical Operating Circuits (continued)



_Chip Information

PROCESS: BICMOS


Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

PKG		12L 3x3			16L 3x3		1 ——									
REF.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.]		EXP	POSE	D PAD	VARI	ATIO	NS		
Α	0.70	0.75	0.80	0.70	0.75	0.80	PKG. CODES		D2			E2				DOWN
b	0.20	0.25	0.30	0.20	0.25	0.30	CODES	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	PIN ID	JEDEC	BONDS ALLOWER
D	2.90	3.00	3.10	2.90	3.00	3.10	T1233-1	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45°	WEED-1	NO
Е	2.90	3.00	3.10	2.90	3.00	3.10	T1233-3	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45°	WEED-1	YES
е		0.50 BSC			0.50 BSC		T1233-4	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45°	WEED-1	YES
L	0.45	0.55	0.65	0.30	0.40	0.50	T1633-1	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45°	WEED-2	NO
N		12			16		T1633-2	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45°	WEED-2	YES
ND		3			4		T1633F-3	0.65	0.80	0.95	0.65	0.80	0.95	0.225 x 45°	WEED-2	N/A
NE		3			4		T1633FH-3	0.65	0.80	0.95	0.65	0.80	0.95	0.225 x 45°	WEED-2	N/A
A1	0	0.02	0.05	0	0.02	0.05	T1633-4	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45°	WEED-2	NO
A2	0.25	0.20 REF	:	0.25	0.20 REF			_		_			_			
DIME	DIMENS	IONS AF	RE IN MI	LLIMETI	ERS. AN		ME Y14.5M-1994. RE IN DEGREES.									
2. ALL I 3. N IS THE JESE WITH MARI	DIMENS THE TO TERMIN 95-1 SI IIN THE KED FE	IONS AF TAL NUI NAL #1 IE PP-012. ZONE II ATURE.	RE IN MI MBER O DENTIFIE DETAIL NDICATI	ER AND S OF TE ED. THE	ERS. AND INALS. TERMIN ERMINAL TERMIN	GLES AR AL NUME #1 IDEN IAL #1 ID	RE IN DEGREES. BERING CONVENTION ITIFIER ARE OPTIONAL BENTIFIER MAY BE EITH	, BUT M IER A M	OLD O	E LOCA R						
I. DIME 2. ALL [3. N IS 3. THE 3. JESE WITH MARI DIME FROI	THE TO TERMIN 95-1 SI IIN THE KED FE NSION W TERM	IONS AF TAL NUI NAL #1 IE PP-012. ZONE II ATURE. b APPLII	RE IN MI MBER O DENTIFIE DETAIL NDICATI ES TO M	LLIMETI F TERM ER AND S OF TE ED. THE	ERS. AND INALS. TERMIN. ERMINAL TERMIN	GLES AR AL NUME #1 IDEN IAL #1 ID	RE IN DEGREES. BERING CONVENTION ITIFIER ARE OPTIONAL BENTIFIER MAY BE EITH AND IS MEASURED BET	, BUT M IER A M WEEN	OLD OI	E LOCA R n AND (ı				
DIME ALL C THE JESC WITH MARI DIME FROI	DIMENS THE TO TERMIN 95-1 SI IIN THE KED FE. INSION M TERM	TAL NUI NAL #1 IE PP-012. ZONE II ATURE. b APPLII IINAL TIF	RE IN MI MBER O DENTIFIE DETAIL NDICATI ES TO M	LLIMETI F TERM ER AND S OF TE ED. THE METALLI NUMBE	ERS. AND INALS. TERMINAL ERMINAL TERMIN ZED TER	GLES AR AL NUME #1 IDEN IAL #1 IDEN RMINAL A	RE IN DEGREES. BERING CONVENTION LITIFIER ARE OPTIONAL BENTIFIER MAY BE EITH AND IS MEASURED BET S ON EACH D AND E SI	, BUT M IER A M WEEN	OLD OI	E LOCA R n AND (1				
DIME ALL [I N IS THE JESE WITH MARI DIME FROI	DIMENS THE TO TERMIN 95-1 SI IIN THE KED FE INSION IN TERMIN ND NE	SIONS AF TAL NUI NAL #1 IE PP-012. ZONE II ATURE. b APPLII MINAL TIF REFER TON IS F	RE IN MI MBER O DENTIFIE DETAIL NDICATI ES TO MO C. FO THE POSSIBL	LLIMETI F TERM ER AND S OF TE ED. THE METALLI NUMBE E IN A S	ERS. AND INALS. TERMINAL TERMI	AL NUME #1 IDEN IAL #1 IDI MINAL A RMINALS RICAL FA	RE IN DEGREES. BERING CONVENTION ITIFIER ARE OPTIONAL SENTIFIER MAY BE EITH AND IS MEASURED BET SON EACH DAND E SI ASHION.	, BUT M HER A M WEEN (UST BE OLD OI 0.20 mm	E LOCA R n AND (1				
DIME ALL [3] THE JESC WITH MARI DIME FROIT ND A	DIMENS THE TO TERMIN 95-1 SI IIN THE KED FE INSION IN TERM ND NE IND NE IND PULAT ANARI	SIONS AF TAL NUI NAL #1 IE PP-012. ZONE II ATURE. b APPLII MINAL TIF REFER TOON IS F TY APPL	RE IN MI MBER O DENTIFIE DETAIL NDICATI ES TO MO TO THE POSSIBL LIES TO	LLIMETI F TERM ER AND S OF TE ED. THE METALLI NUMBE LE IN A S THE EX	ERS. AND INALS. TERMINAL TERMI	GLES AR AL NUME #1 IDEN IAL #1 ID MINAL A RMINAL S RICAL FA HEAT SIN	RE IN DEGREES. BERING CONVENTION ITIFIER ARE OPTIONAL BENTIFIER MAY BE EITH AND IS MEASURED BET S ON EACH D AND E SI ASHION. NK SLUG AS WELL AS 1	, BUT M HER A M WEEN (UST BE OLD OI 0.20 mm	E LOCA R n AND (1				
DIME ALL [B. N IS THE JESE WITH MARI FROI ND A COPI DEPC	DIMENS THE TO TERMIN 95-1 SI IIN THE KED FE. INSION M TERM ND NE IDPULAT LANARI WING C	SIONS AF DTAL NUI AL #1 IE PP-012. ZONE IN ATURE. b APPLII MINAL TIF REFER TOON IS F TY APPLIONFORM	RE IN MI MBER O DENTIFII DETAIL NDICATI ES TO MO TO THE POSSIBL LIES TO MS TO J	LLIMETE F TERM ER AND S OF TE ED. THE METALLI NUMBE E IN A S THE EX EDEC M	ERS. ANG INALS. TERMINA. FRMINAL TERMIN ZED TER R OF TER SYMMETI POSED I	GLES AR AL NUME #1 IDEN IAL #1 ID IMINAL A RMINALS RICAL FA HEAT SIN	RE IN DEGREES. BERING CONVENTION ITHER ARE OPTIONAL ENTIFIER MAY BE EITH AND IS MEASURED BET S ON EACH D AND E SI ASHION. WIX SLUG AS WELL AS T C.	, BUT M HER A M WEEN (UST BE OLD OI 0.20 mm	E LOCA R n AND (1				
DIME ALL [B. N IS THE JESE WITH MARI DIME FROI ND A COPI DRAN MARA	DIMENS THE TO TERMIN 95-1 SI IIN THE KED FE. INSION M TERM ND NE DPULAT LANARI WING C KING IS	SIONS AF DTAL NUI NAL #1 IE PP-012. ZONE II ATURE. b APPLII MINAL TIF REFER TOON IS F TY APPL CONFORM	RE IN MI MBER O DENTIFII DETAIL NDICATI ES TO M TO THE POSSIBL LIES TO MS TO J ACKAGE	LLIMETI F TERM ER AND S OF TE ED. THE METALLI NUMBE LE IN A S THE EX EDEC ME	ERS. AND INALS. TERMINALS. TERMINAL TER	GLES AR AL NUME #1 IDEN IAL #1 ID IMINAL A RMINALS RICAL FA HEAT SIN	RE IN DEGREES. BERING CONVENTION ITIFIER ARE OPTIONAL BERTIFIER MAY BE ETT AND IS MEASURED BET S ON EACH D AND E SI ASHION. KK SLUG AS WELL AS 1 C. NCE ONLY	, BUT M HER A M WEEN (UST BE OLD OI 0.20 mm	E LOCA R n AND ()AL	LAS /		IX

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

16 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600