

3.3V, SOTinyTM 0.4 Ω Dual SPDT Analog Switch

Features

• CMOS Technology for Bus and Analog Applications

• Low On-Resistance: 0.4Ω (+2.7V Supply)

• Wide V_{DD} Range: +1.5V to +4.2V

• Low Power Consumption : 5μW

· Rail-to-Rail switching throughout Signal Range

• Fast Switching Speed: 20ns max. at 3.3V

• High Off Isolation: -27dB at 100 kHz

 –41dB (100 kHz) Crosstalk Rejection Reduces Signal Distortion

• Extended Industrial Temperature Range: -40°C to 85°C

· Packaging:

- Pb-free & Green, 12-pin TDFN (ZE)

Applications

- · Cell Phones
- PDAs
- Portable Instrumentation
- Battery Powered Communications
- · Computer Peripherals

Pin Description

Pin Number	Name	Description
8, 11	NOx	Data Port (Normally Open)
3, 6	GND	Ground
2, 5	NCx	Data Port (Normally Closed)
1, 4	COMx	Common Output/Data Port
9, 12	V _{DD} x	Postive Power Supply ⁽²⁾
7, 10	INx	Logic Control

Notes:

- 1. x = 0 or 1
- 2. V_{DD0} ad V_{DD1} are not internally connected. Each must be powered seperately.

Description

The PI3A3160 is a fast Dual single-pole double-throw (SPDT) CMOS switch. It can be used as an analog switch or as a low-delay bus switch. Specified over a wide operating power supply voltage range, +1.5V to +4.2V, the switch has an On-Resistance of 0.4Ω at 3.0V.

Control inputs, IN, tolerates input drive signals up to 3.3V, independent of supply voltage.

PI3A3160 is a lower voltage and On-Resistance replacement for the PI5A3158.

Block Diagram / Pin Configuration

Function Table

Logic Input	Function
0	NCx Connected to COMx
1	NOx Connected to COMx

09-0003 PS8711G 10/13/09

Absolute Maximum Ratings

Voltages Referenced to GND	
V _{DD}	0.5V to +4.4V
V _{IN} , V _{COM} , V _{NC} , V _{NO} ⁽¹⁾ or 30mA, whichever occurs first	$-0.5V$ to $V_+ + 0.3V$
Current (any terminal)	±200mA
Peak Current, COM, NO, NC (Pulsed at 1ms, 10% duty cycle)	±400mA

Thermal Information

Continuous Power Dissipation	
SOT23 (derate 7.1mW/°C above +70°C)	0.5W
Storage Temperature	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Note 1: Signals on NC, NO, COM, or IN exceeding V_{DD} or GND are clamped by internal diodes. Limit forward diode current to 30mA.

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +4.2V Supply

 $(V_{DD} = +4.2V \pm 5\%, GND = 0V, V_{IH} = 1.6V, V_{IL} = 0.7V)$

Parameter	Symbol	Conditions	Temp. (°C)	Min. ⁽¹⁾	Typ. (2)	Max. (1)	Units
Analog Switch	•		•				
Analog Signal Range (3)	V _{ANALOG}		Full	0		V_{DD}	V
On Desistance	D.		25		0.4	0.45	
On Resistance	R _{ON}	$V_{DD} = 4.0 V,$	Full			0.6	
On-Resistance Match	A.D.	$I_{COM} = 99 \text{mA},$ $V_{IN} = 0 \text{V to V}_{DD}$	25			0.08	Ω
Between Channels ⁽⁴⁾	ΔR_{ON}		Full			0.09	
On-Resistance Flatness ⁽⁵⁾	R _{FLAT(ON)}	$V_{DD} = 4.0V,$ $I_{COM} = 100 \text{mA}$	25			0.1	
On-Resistance Flatness			Full			0.1	
NO or NC Off Leakage	I _{NO(OFF)} or	V -4 2V	25	-100		100	
Current ⁽⁶⁾	I _{NC(OFF)}	$V_{\rm DD}$ =4.2V	Full	-400		400]
COM On Leakage Current ⁽⁶⁾	I	$V_{DD} = 4.2V$	25	-200		200	nA
	I _{COM(ON)}		Full	-400		400	

Notes:

- 1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.
- 6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.
- 7. Off Isolation = $20\log_{10} [V_{COM} / (V_{NO} \text{ or } V_{NC})]$. See Figure 4.
- 8. Between any two switches. See Figure 5.

09-0003 PS8711G 10/13/09

Electrical Specifications - Single +3.3V Supply

 $(V_{DD} = +3.3V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter	Symbol	Conditions	Temp. (°C)	Min. ⁽¹⁾	Typ. (2)	Max. (1)	Units	
Analog Switch								
Analog Signal Range (3)	V _{ANALOG}		Full	0		V_{DD}	V	
On Resistance	D		25		0.4	0.45		
On Resistance	R _{ON}	$V_{DD} = 2.7V$,	Full			0.6		
On-Resistance Match	A D	$I_{COM} = 100 \text{mA},$ $V_{NO} \text{ or } V_{NC} = +1.5 \text{V}$	25			0.08		
Between Channels ⁽⁴⁾	ΔR_{ON}	THO STATE	Full			0.09	Ω	
(5)	R _{FLAT(ON)}	$V_{DD} = 2.7V,$ $I_{COM} = 100 \text{mA},$ $V_{NO} \text{ or } V_{NC} = 0.8V, 2.0V$	25			0.1		
On-Resistance Flatness ⁽⁵⁾			Full			0.1		
NO or NC Off Leakage	I _{NO(OFF)} or	$V_{DD} = 3.3V$	25	-100		100		
Current ⁽⁶⁾	I _{NC(OFF)}	$V_{COM} = 0V,$ V_{NO} or $V_{NC} = +2.0V$	Full	-400		400		
COM On Leakage Current ⁽⁶⁾		$V_{DD} = 3.3V$	25	-200		200	nA	
	I _{COM(ON)}	$V_{COM} = +2.0V,$ V_{NO} or $V_{NC} = +2.0V$	Full	-400		400		

- 1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.
- 6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.
- 7. Off Isolation = $20\log_{10} [V_{COM} / (V_{NO} \text{ or } V_{NC})]$. See Figure 4.
- 8. Between any two switches. See Figure 5.

Electrical Specifications - Single +4.2V Supply

 $(V_{DD} = +4.2V \pm 5\%, GND = 0V, V_{IH} = 1.6V, V_{IL} = 0.7V)$

Description	Param- eters	Test Conditions	Temp (°C)	Min. ⁽¹⁾	Typ.(2)	Max. ⁽¹⁾	Units
Logic Input							
Input High Voltage	V _{IH}	Guaranteed logic High Level	Full	1.6			V
Input Low Voltage	V_{IL}	Guaranteed logic Low Level				0.7]
Input Current with Voltage High	I _{INH}	$V_{\rm IN}$ = 1.4V, all others = 0.5V		-1		1	
Input Current with Voltage Low	I _{INL}	$V_{IN} = 0.5V$, all other = 1.4V		-1		1	μA
Dynamic							
T. O. T.	1,		25			20	
Turn-On Time	t_{ON}	$V_{DD} = 4.2V$, V_{NO} or	Full			25	Ī
T. O.C.T.	1	$V_{NC} = 2.0V$, Figure 1	25			12	ns
Turn-Off Time	t _{OFF}		Full			15	
		V_{NO} or $V_{NC} = 1.5V$,	25	1	12		
Break-Before-Make	t _{BBM}	$R_L = 50\Omega$, $C_L = 35$ pF, See Figure 8	Full	1			
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ Ω, Figure 2	25		100		pC
Off Isolation ⁽⁷⁾	O _{IRR}	$R_L = 50\Omega$, $f = 100$ kHz, Figure	3		-27		dB
Cross Talk ⁽⁸⁾	X _{TALK}	$R_L = 50\Omega$, $f = 100$ kHz, Figure	4		-41] ab
NC or NO Capacitance	C _(OFF)	f = 1MHz, Figure 5			56		
COM Off Capacitance	C _{COM(OFF)}	1 – TWIFIZ, FIGURE 3			56		pF
COM On Capacitance	C _{COM(ON)}	f = 1MHz, Figure 6			160		
Supply							
Power-Supply Range	V_{DD}		Full	1.5		3.6	V
Positve Supply Current	I _{CC}	$V_{DD} = 3.6V$, $V_{IN} = 0V$ or V_{DD}	25			0.3	μА

- 1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.
- 6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.
- 7. Off Isolation = $20log_{10}$ [V_{COM} / (V_{NO} or V_{NC})]. See Figure 4.
- 8. Between any two switches. See Figure 5.

Electrical Specifications - Single +3.3V Supply

 $(V_{DD} = +3.3V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Description	Param- eters	Test Conditions	Temp (°C)	Min. ⁽¹⁾	Typ.(2)	Max. ⁽¹⁾	Units
Logic Input							
Input High Voltage	V_{IH}	Guaranteed logic High Level	Full	1.4			V
Input Low Voltage	$V_{\rm IL}$	Guaranteed logic Low Level				0.5] V
Input Current with Voltage High	I _{INH}	$V_{IN} = 1.4V$, all others = 0.5V		-1		1	
Input Current with Voltage Low	I _{INL}	$V_{IN} = 0.5V$, all other = 1.4V		-1		1	μΑ
Dynamic							
т. О. Т.	1,		25			20	
Turn-On Time Turn-Off Time	t_{ON}	$V_{DD} = 3.3 \text{V}, V_{NO} \text{ or}$ $V_{NC} = 2.0 \text{V}, \text{ Figure 1}$	Full			25	ns
	t _{OFF}		25			12	
Turn-On Time			Full			15	
		V_{NO} or $V_{NC} = 1.5V$,	25	1	12		
Break-Before-Make	t _{BBM}	$R_L = 50\Omega$, $C_L = 35$ pF, See Figure 8	Full	1			
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ Ω, Figure 2	25		100		pC
Off Isolation ⁽⁷⁾	O _{IRR}	$R_L = 50\Omega$, $f = 100$ kHz, Figure	3		-27	1	ID.
Cross Talk ⁽⁸⁾	X _{TALK}	$R_L = 50\Omega$, $f = 100$ kHz, Figure	4		-41		dB
NC or NO Capacitance	$C_{(OFF)}$	f = 1MHz, Figure 5	'		56		
COM Off Capacitance	C _{COM(OFF)}	1 - HVIIIZ, Figure 3			56		pF
COM On Capacitance	C _{COM(ON)}	f = 1MHz, Figure 6			160		
Supply							
Power-Supply Range	V_{DD}		Full	1.5		3.6	V
Positve Supply Current	I _{CC}	$V_{DD} = 3.6V$, $V_{IN} = 0V$ or V_{DD}	25			0.3	μА

- 1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.
- 6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.
- 7. Off Isolation = $20\log_{10} [V_{COM} / (V_{NO} \text{ or } V_{NC})]$. See Figure 4.
- 8. Between any two switches. See Figure 5.

Electrical Specifications - Single +2.5V Supply

 $(V_{DD} = +2.5V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Description	Parameters	Test Conditions	Temp.(°C)	Min. ⁽¹⁾	Typ.(2)	Max. ⁽¹⁾	Units	
Analog Switch								
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V_{DD}	V	
On Resistance	R _{ON}		25			0.5		
On Resistance	KON	$V_{DD} = 2.5V, I_{COM} = 80mA,$	Full			0.55	_	
On-Resistance Match	$\Delta R_{ m ON}$	V_{NO} or $V_{NC} = 1.8V$	25			0.09	Ω	
Between Channels (4)	ΔKON		Full			0.09		
On-Resistance Flatness ⁽⁵⁾	PEL ATTOM	$V_{DD} = 2.5V, I_{COM} = 80mA,$	25			0.1		
On-Resistance Flatness	R _{FLAT(ON)}	$V_{NO} \text{ or } V_{NC} = 0.8V \ 1.8V$	Full			0.1		
Dynamic								
Turn-On Time	ton	$V_{DD} = 2.5V$, V_{NO} or $V_{NC} = 1.8V$, Figure 1	25			20		
Turn-On Time			Full			30		
Turn-Off Time			25			12		
Tuni-On Time	t _{OFF}		Full			15	ns	
Break-Before-Make	$t_{ m BBM}$	V_{NO} or V_{NC} = 1.5V, R_L = 50 Ω , C_L = 35pF, See Figure 8	25	1	15			
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ V, Figure 2	25		60		pC	
Logic Input								
Input HIGH Voltage	V _{IH}	Guaranteed logic high level	Full	1.4			V	
Input LOW Voltage	$V_{\rm IL}$	Guaranteed logic Low level	Full			0.5		
Input HIGH Current	I _{INH}	$V_{IN} = 1.4V$, all others = $0.5V$	Full	-1		1	4	
Input HIGH Current	I_{INL}	$V_{IN} = 0.5V$, all others = 1.4V	Full	-1		1	μA	

- 1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

Electrical Specifications - Single +1.8V Supply

 $(V_{DD} = +1.8V \pm 10\%, GND = 0V, V_{INH} = 1.4V, V_{INL} = 0.5V)$

Description	Parameters Parameters	Test Conditions	Temp.(°C)	Min. ⁽¹⁾	Typ.(2)	Max. ⁽¹⁾	Units
Analog Switch							
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V_{DD}	V
On-Resistance	R _{ON}		25			0.55	
On-Resistance	KON	$V_{DD} = 1.8V, I_{COM} = 60mA,$	Full			0.7]
On-Resistance Match	$\Delta R_{ m ON}$	V_{NO} or $V_{NC} = 1.5V$	25			0.03	Ω
Between Channels (4)	ZIKON		Full			0.03	
On-Resistance Flat-	Pri ATKOND	$V_{DD} = 1.8V, I_{COM} = 60mA,$	25			0.9	
ness ⁽⁵⁾	R _{FLAT(ON)}	V_{NO} or $V_{NC} = 0.8V$, 1.5V	Full			1.1	
Dynamic							
Town On Time	4	$V_{DD} = 1.8V$, V_{NO} or $V_{NC} = 1.5V$, Figure 1	25			40	
Turn-On Time toN	ton		Full			50]
Turn-Off Time	1,		25			12]
Turn-OII Time	t _{OFF}		Full			15	ns
Break-Before-Make	t _{BBM}	V_{NO} or V_{NC} = 1.5V, R_L = 50 Ω , C_L = 35pF, See Figure 8	25	1	30		
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ V, Figure 2	25		40		рC
Logic Input							
Input HIGH Voltage	V _{IH}	Guaranteed logic high level	Full	1.4			17
Input LOW Voltage	V _{IL}	Guaranteed logic Low level	Full			0.5	V
Input HIGH Current	I _{INH}	$V_{IN} = 1.4V$, all others = 0.5V	Full	-1		1	
Input HIGH Current	I _{INL}	$V_{IN} = 0.5V$, all others =1.4V	Full	-1		1	μΑ

- 1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

Test Circuits/Timing Diagrams

Figure 1. Switching Time

Figure 2. Charge Injection

Figure 3. Off Isolation

Figure 4. Crosstalk

Test Circuits/Timing Diagrams (continued)

Figure 5. Channel-Off Capacitance

Figure 6. Channel-On Capacitance

Figure 8. Break Before Make Diagram

Packaging Mechanical: 12-Contact TDFN (ZE)

06-0360

Note:

• For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information

Ordering Code	dering Code Package Code Package Description		Top Mark
PI3A3160ZEEX	ZE	Pb-free & Green, 12-contact TDFN	YI

Notes:

- 1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- 2. X = Tape/Reel
- 3. Number of transistors = TBD

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com