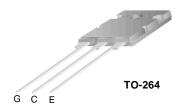


IGBT

FGL60N100D

General Description


Insulated Gate Bipolar Transistors (IGBTs) with trench gate structure have superior performance in conduction and switching to planar gate structure, and also have wide noise immunity. These devices are well suitable for IH applications

Features

- High Speed Switching
- Low Saturation Voltage : $V_{CE(sat)} = 2.5V @ I_C = 60A$
- High Input Impedance
- Built-in Fast Recovery Diode

Application

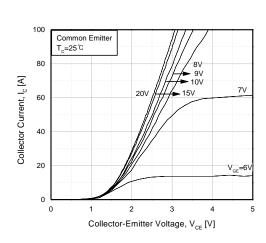
Home Appliance, Induction Heater, IH JAR, Micro Wave Oven

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Description		FGL60N100D	Units
V _{CES}	Collector-Emitter Voltage		1000	V
V _{GES}	Gate-Emitter Voltage		± 25	V
	Collector Current	@ T _C = 25°C	60	A
I _C	Collector Current	@ T _C = 100°C	42	А
I _{CM (1)}	Pulsed Collector Current		120	А
I _F	Diode Continuous Forward Current	@ T _C = 100°C	15	A
I _F	Maximum Power Dissipation	@ $T_C = 25^{\circ}C$	176	W
	Maximum Power Dissipation	@ T _C = 100°C	70	W
T _J	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C
T _L	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 second	ds	300	°C

Notes

(1) Repetitive rating : Pulse width limited by max. junction temperature


Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
R _{θJC} (IGBT)	Thermal Resistance, Junction-to-Case		0.71	°C/W
$R_{\theta JC}(DIODE)$	Thermal Resistance, Junction-to-Case		2.08	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		25	°C/W

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Cha	racteristics					
I _{CES}	Collector Cut-Off Current	V _{CE} = 1000V, V _{GE} = 0V			1.0	mA
I _{GES}	G-E Leakage Current	$V_{GE} = \pm 25, V_{CE} = 0V$			± 500	nA
On Cha	racteristics					
$V_{GE(th)}$	G-E Threshold Voltage	$I_C = 60 \text{mA}, V_{CE} = V_{GE}$	4.0	5.0	7.0	V
	Collector to Emitter	$I_C = 10A$, $V_{GE} = 15V$		1.6	2.0	V
V _{CE(sat)}	Saturation Voltage	$I_C = 60A$, $V_{GE} = 15V$		2.5	2.9	V
C _{ies}	C Characteristics Input Capacitance	V -10V V - 0V		6300		pF
C _{ies}	' '	$V_{CE} = 10V_{,} V_{GE} = 0V_{,}$				
C _{oes}	Output Capacitance	f = 1MHz		160		pF
C _{res}	Reverse Transfer Capacitance			140		pF
Switchi	ng Characteristics					
t _{d(on)}	Turn-On Delay Time	V 600V I 60A		160	400	ns
	Rise Time	$V_{CC} = 600V, I_C = 60A,$		360	700	ns
t _r	Kise fillie	D - 510 \/ -15\/				
t _r	Turn-Off Delay Time	$R_G = 51\Omega$, $V_{GE} = 15V$,		410	700	ns
t _r t _{d(off)}		$R_G = 51\Omega, V_{GE} = 15V,$ Resistive Load, $T_C = 25^{\circ}C$		410 240	700 330	
t _r t _{d(off)} t _f Q _a	Turn-Off Delay Time	Resistive Load, T _C = 25°C				ns
t _r t _{d(off)}	Turn-Off Delay Time Fall Time			240	330	ns ns

Electrical Characteristics of DIODE $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
\/	Diode Forward Voltage	I _F = 15A		1.2	1.7	V
VFM	V _{FM} Diode Forward Voltage	I _F = 60A		1.8	2.1	V
t _{rr}	Diode Reverse Recovery Time	$I_F = 60A di/dt = -20A/us$		1.2	1.5	us
IR	Instantaneous Reverse Current	VRRM = 1000V		0.05	2	uA

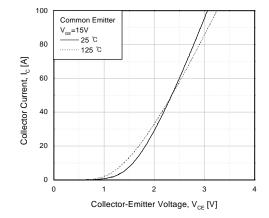
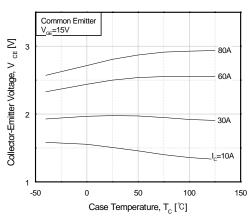



Fig 1. Typical Output Characteristics

Fig 2. Typical Saturation Voltage Characteristics

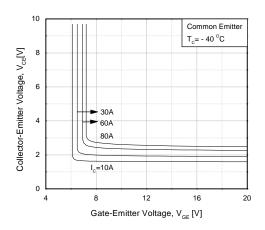
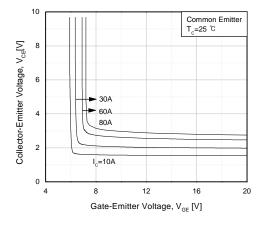



Fig 3. Saturation Voltage vs. Case
Temperature at Varient Current Level

Fig 4. Saturation Voltage vs. V_{GE}

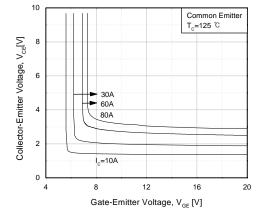


Fig 5. Saturation Voltage vs. V_{GE}

Fig 6. Saturation Voltage vs. V_{GE}

©2002 Fairchild Semiconductor Corporation

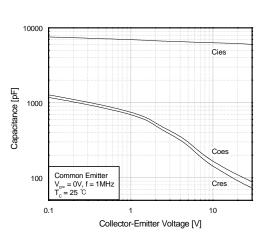


Fig 7. Capacitance Characteristics

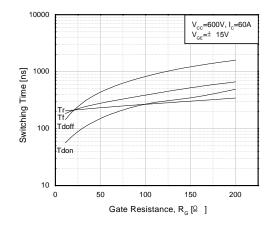


Fig 8. Switching Characteristics vs. Gate Resistance

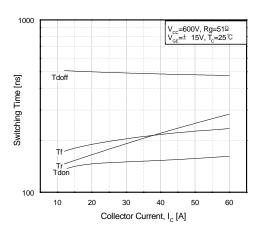


Fig 9. Switching Characteristics vs. Collector Current

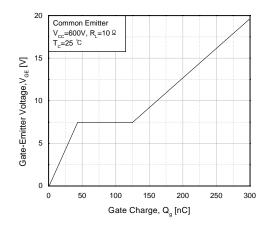


Fig 10. Gate Charge Characteristics

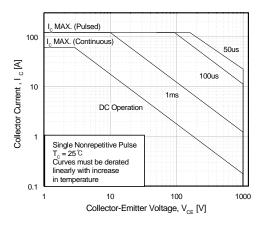


Fig 11. SOA Characteristics

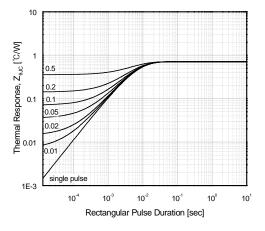


Fig 12. Transient Thermal Impedance of IGBT

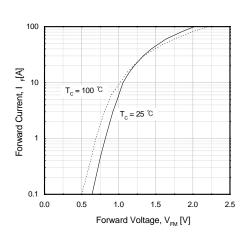


Fig 13. Forward Characteristics

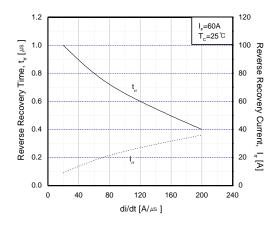


Fig 14. Reverse Recovery Characteristics vs. di/dt

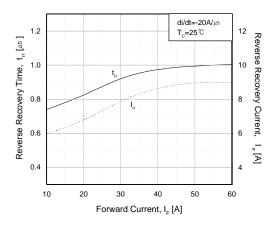


Fig 15. Reverse Recovery Characteristics vs. Forward Current

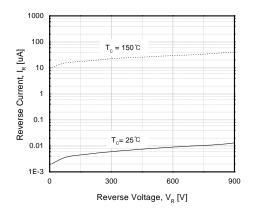


Fig 16. Reverse Current vs. Reverse Voltage

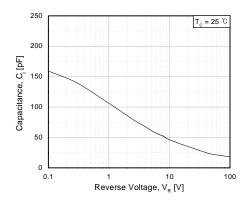


Fig 17. Junction capacitance

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	MICROWIRE™	SLIENT SWITCHER®	UHC™
Bottomless™	FASTr™	OPTOLOGIC™	SMART START™	UltraFET [®]
CoolFET™	FRFET™	OPTOPLANAR™	SPM™	VCX^{TM}
CROSSVOLT™	GlobalOptoisolator™	PACMAN™	STAR*POWER™	
DenseTrench™	GTO™	POP™	Stealth™	
DOME™	HiSeC™	Power247™	SuperSOT™-3	
EcoSPARK™	I ² C TM	PowerTrench [®]	SuperSOT™-6	
E ² CMOS™	ISOPLANAR™	QFET™	SuperSOT™-8	
EnSigna™	LittleFET™	QS^{TM}	SyncFET™	
FACT™	MicroFET™	QT Optoelectronics™	TinyLogic™	
FACT Quiet Series™	MicroPak™	Quiet Series™	TruTranslation™	

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

©2002 Fairchild Semiconductor Corporation Rev. H5