# Compact, Precise Overvoltage and Overcurrent Protection Automotive, industrial, and aviation electronics need to survive and operate through power supply surges endemic to their environment. Traditional overvoltage (OV) and overcurrent (OC) protection relies on capacitors, transient voltage suppressors (TVS), fuses, diodes, and inductors, but these discrete solutions are bulky, inaccurate, and blow the fuse during a sustained fault. Linear Technology's surge stopper family replaces these passive components with a controller and series protection MOSFET, enabling a compact and precise solution. ### Shields Load Electronics from High Voltage Surges - Allows Uninterrupted System Operation through Surges - Protects Supply from Overload and Short-Circuit - Disconnects Load from Supply for Sustained Faults - Adjustable Clamp Voltage Eases Design Changes and Reuse - Tight Accuracy Minimizes Overdesign and Reduces Cost - Low Profile, Surface Mount Solution Enables Compact Form Factor - Automotive and Military-Plastic Temperature Grades ### **No More Bulky Components!** # Linear Surge Stoppers During normal operation, a linear surge stopper fully turns on the MOSFET to provide a low resistance path for the load current. When the input supply voltage surges, the output is linearly regulated to a safe voltage set by a resistive divider, enabling ride-through operation. A capacitive fault timer protects the MOSFET by limiting the time spent in the high dissipation regulation state. ### Surge Stopper with Circuit Breaker - Resistor-Adjustable 2% Accurate Clamp Voltage - Input Surge: Linear Regulator for Adjustable Time - -60V Reverse Input Protection - Foldback Current-Limited Circuit Breaker with Adjustable Delay - Fault Timer Accelerated by MOSFET Voltage Drop ## Surge Stopper with Ideal Diode - LT4363 Functions Plus Ideal Diode Control - Ideal Diode for Output Holdup and Reverse Protection - Resistor-Adjustable 2.4% Accurate Clamp Voltage - -40V Reverse-Input, -20V Reverse-Output Protection # VIN VOUT SHDN SHDN FB ENABLE FAULT TIMER ### 8µA Quiescent Current Surge Stopper - Low 8μA Operating I<sub>Q</sub>, 6μA in Shutdown - Pin-Selectable Gate Clamp for 12V and 24V/28V Systems - Input Surge: Clamps MOSFET Gate for Adjustable Time - -60V Reverse Input Protection - Current-Limited Circuit Breaker with Adjustable Delay - Fault Timer Accelerated by MOSFET Power # VOUT VCC LTC4380 FAULT CLAMP SELECT TIMER # Floating Surge Stopper - Rugged Floating Topology for >500V Operation - Resistor-Adjustable 3% Accurate Clamp Voltage - Input Surge: Linear Regulator for Adjustable Time # Switching Surge Stopper During normal operation, a switching surge stopper turns on an external MOSFET continuously to pass the input voltage through to the output with minimum conduction loss. When an input voltage surge occurs, it starts switching the external MOSFET to operate as a high efficiency switching DC/DC regulator to protect critical downstream components by limiting the output voltage and current. ## High Efficiency Switching Surge Stopper - High Efficiency for High Power (>5A) Surges - Normal Operation: 100% Duty Cycle with MOSFET On - Input Surge: Switching Regulator with Adjustable Timer - Resistor Adjustable 1.1% Accurate Clamp Voltage - Adjustable Current Limit - Inherent LC Filter Improves Input EMI # **Protection Controllers** Protection controllers disconnect immediately during overvoltage and provide a compact solution for power entry protection in battery-powered portable equipment. # Undervoltage (UV), Overvoltage (OV), Overcurrent (OC), and Reverse Input (RI) Protection Controllers - Block Voltages Outside UV-OV Window - -40V Reverse Input Protection - Adjustable 1.5% Accurate UV, OV Thresholds - Low Quiescent and Shutdown Currents - Compact Solution Footprint | Device | V <sub>IN</sub> | UV | ov | RI | ос | Forward<br>Current<br>Trip | Reverse<br>Current<br>Trip | |---------|-----------------|----|----|----|----|----------------------------|----------------------------| | LTC4365 | 2.5V to 34V | • | • | • | | | | | LTC4367 | 2.5V to 60V | • | • | • | | | | | LTC4368 | 2.5V to 60V | • | • | • | • | 50mV | -50mV/-3mV | # 2.5V TO 60V SHDN UV LTC4368 FAULT OV RETRY # Overvoltage and Overcurrent Protection Controllers - 2.5V to 5.5V Operation - Fixed 5.8V ±2% Overvoltage Turn-Off Threshold - <1µs Fast Overvoltage Turn-Off</li> - Reverse Input Protection FET Driver Output - Compact Solution Footprint | Device | V <sub>IN(MAX)</sub> | ov | ос | MOSFET | |---------|----------------------|----|----|---------------| | LTC4360 | 80V | • | | External N-Ch | | LTC4361 | 80V | • | • | External N-Ch | | LTC4362 | 28V | • | • | Internal 1.5A | # Solutions for Automotive and Military Surge Standards Linear Technology provides evaluation boards demonstrating surge stopper circuits for automotive and military surge standards such as ISO-7637-2 and MIL-STD-1275D. Each board has been tested by an independent lab with the complete test report available online. # DC2062 for 12V, 3.8A ISO-7637-2 Application - Features LT4363 Surge Stopper - Rides through 100V, 500ms Load Dump Pulse - Latchoff and Auto-Retry Options | Parameter | Min | Тур | Max | Units | |------------------------------|------|-----|------|-------| | Input Supply Operating Range | 5 | 12 | 23.5 | V | | Input Supply 500ms Surge | 100 | | | V | | Output Regulation Voltage | 23.5 | 25 | 25.4 | V | | Current Limit | 3 | 3.8 | 4.6 | А | # DC2150 for 28V, 5A MIL-STD-1275D Application - Features LTC4366 and LT4363 Surge Stoppers - Rides through 100V, 500ms Surge - Four Assembly Options, Full-Featured Option Available | Parameter | Min | Тур | Max | Units | |------------------------------|-----|------|-----|-------| | Input Supply Operating Range | 8 | 28 | 40 | V | | Input Supply 500ms Surge | 100 | | | V | | Output Regulation Voltage | 41 | 43.6 | 46 | V | | Current Limit | 4.4 | 5 | 5.6 | А | ## Overvoltage Protection Selection Guide | Device | OVP Type* | OCP | Operating<br>V <sub>IN</sub> | Stops<br>V <sub>IN</sub> | Reverse<br>Input | Ι <sub>Q</sub><br>(μΑ) | Ishbw (µA) | MOSFET | OVP<br>Accuracy | Fault Timer | Blocks I <sub>REV</sub> | Temp<br>Grades | Demo<br>Board | Package (mm x mm) | |------------------------|-----------|-----|------------------------------|--------------------------|------------------|------------------------|------------|--------|-----------------|-------------|-------------------------|----------------|---------------|----------------------------| | Surge Stoppers | | | | | | | | | | | | | | | | LT4356 | 1 | •† | 4V to 80V | >100V | -60V | 1210 | 7 | N-Ch | 2% | • | | C, I, H, MP | DC1018 | 4x3 DFN-12, MSOP-10, SO-16 | | LT4363 | 1 | • | 4V to 80V | >100V | -60V | 970 | 7 | N-Ch | 2% | • | | C, I, H, MP | DC1935 | 4x3 DFN-12, MSOP-12, SO-16 | | LTC4364 | 1 | • | 4V to 80V | >100V | -40V | 483 | 10 | N-Ch | 2.4% | • | • | C, I, H | DC2027 | 4x3 DFN-14, MSOP-16, SO-16 | | LTC4366 | 1 | | 9V to >500V | >500V | External | 159 | 5 | N-Ch | 3% | • | | C, I, H, MP | DC1850 | 3x2 DFN-8, TSOT-8 | | LTC4380 | 2 | • | 4V to 72V | >100V | -60V | 8 | 6 | N-Ch | ~10% | • | | C, I, H | DC2178 | 3x3 DFN-10, MSOP-10 | | LTC7860 | 3 | • | 3.5V to 60V | >100V | External | 770 | 7 | P-Ch | 1.1% | • | | E, I, H, MP | DC2239 | MSOPE-12 | | Protection Controllers | | | | | | | | | | | | | | | | LTC4365 | 4 | | 2.5V to 34V | >100V | -40V | 125 | 10 | N-Ch | 1.5% | | | C, I, H | DC1555 | 3x2 DFN-8, TSOT-8 | | LTC4367 | 4 | | 2.5V to 60V | >100V | -40V | 70 | 5 | N-Ch | 1.5% | | | C, I, H | DC2417 | 3x3 DFN-8, MSOP-8 | | LTC4368 | 4 | • | 2.5V to 60V | >100V | -40V | 80 | 5 | N-Ch | 1.5% | | • | C, I, H | DC2418 | 3x3 DFN-10, MSOP-10 | | LTC4360 | 4 | | 2.5V to 5.5V | 80V | External | 230 | 1.5 | N-Ch | 2% | | | C, I | DC1505 | SC70-8 | | LTC4361 | 4 | • | 2.5V to 5.5V | 80V | External | 230 | 1.5 | N-Ch | 2% | | | C, I, H | DC1506 | 2x2 DFN-8, TSOT-8 | | LTC4362 | 4 | • | 2.5V to 5.5V | 28V | External | 220 | 1.5 | 1.5A | 2% | | | C, I | DC1575 | 2x3 DFN-8 | OCP = Overcurrent Protection, \* Overvoltage Protection Type: 1 = Linear regulation of output; 2 = Clamps MOSFET gate voltage; 3 = Switching regulation of output; 4 = Disconnects output from input; † Overcurrent protection only below 100V