
November 2016 DocID027162 Rev 4 1/25

1

STM32F74xxx STM32F75xxx
Errata sheet

STM32F74xxx and STM32F75xxx device limitations

Silicon identification

This errata sheet applies to the revision Z of STMicroelectronics STM32F74xxx and
STM32F75xxx products. This family features an ARM® 32-bit Cortex®-M7 with FPU core,
for which an errata notice is also available (see Section 1 for details).

The products are identifiable as shown in Table 1:

• By the revision code marked below the order code on the device package

• By the last three digits of the internal order code printed on the box label

The full list of part numbers is shown in Table 2.

Table 1. Device identification(1)

1. The REV_ID bits in the DBGMCU_IDCODE register show the revision code of the device (see the
STM32F74xxx and STM32F75xxx reference manual (RM0385) for details on how to find the revision
code).

Order code Revision code(2) marked on the device

2. Refer to the device datasheets for details on how identify the revision code on the different packages.

STM32F74xxx
“Z”

STM32F75xxx

Table 2. Device summary

Reference Part number

STM32F74xxx

STM32F745ZG, STM32F745IG, STM32F745ZE, STM32F745IE,
STM32F745VG, STM32F745VE,

STM32F746VG, STM32F746ZG, STM32F746IG, STM32F746BG,
STM32F746NG, STM32F746IE, STM32F746VE, STM32F746ZE,
STM32F746BE, STM32F746NE

STM32F75xxx
STM32F756VG, STM32F756ZG, STM32F756IG, STM32F756BG,
STM32F756NG

www.st.com

http://www.st.com

Contents STM32F74xxx STM32F75xxx

2/25 DocID027162 Rev 4

Contents

1 ARM® 32-bit Cortex®-M7 with FPU limitations . 5

2 STM32F74xxx and STM32F75xxx silicon limitations 6

2.1 System limitations . 8

2.1.1 Missed ADC triggers from TIM1/TIM8, TIM2/TIM5/TIM4/TIM6/TRGO or
TGRO2 event . 8

2.1.2 Internal noise impacting the ADC accuracy . 8

2.1.3 Wakeup from Standby mode when the back-up SRAM regulator
is enabled . 9

2.2 RTC limitation . 9

2.2.1 Spurious tamper detection when disabling the tamper channel 9

2.3 I2C peripheral limitations . 9

2.3.1 Wrong data sampling when data set-up time (tSU;DAT) is smaller than
one I2CCLK period . 9

2.3.2 Spurious bus error detection in Master mode 10

2.3.3 10-bit Master mode: new transfer cannot be launched if first
part of the address has not been acknowledged by the slave 10

2.4 USART peripheral limitations .11

2.4.1 Start bit detected too soon when sampling for NACK signal
from the smartcard . 11

2.4.2 Break request can prevent the Transmission Complete flag (TC) from
being set . 11

2.4.3 nRTS is active while RE or UE = 0 . 11

2.5 FMC peripheral limitation . 12

2.5.1 Dummy read cycles inserted when reading synchronous memories . . . 12

2.5.2 Wrong data read from a busy NAND memory . 12

2.5.3 Missed clocks with continuous clock feature enabled 12

2.6 QUADSPI peripheral limitations . 13

2.6.1 Extra data written in the FIFO at the end of a read transfer 13

2.6.2 First nibble of data is not written after a dummy phase 13

2.6.3 Wrong data can be read in memory-mapped after an indirect mode
operation . 14

2.7 SDMMC1 peripheral limitations . 14

2.7.1 Wrong CCRCFAIL status after a response without CRC is received . . . 14

2.7.2 MMC stream write of less than 8 bytes does not work correctly 15

DocID027162 Rev 4 3/25

STM32F74xxx STM32F75xxx Contents

3

2.8 BxCAN peripheral limitations . 15

2.8.1 BxCAN time triggered mode not supported . 15

2.9 Ethernet peripheral limitations . 16

2.9.1 Incorrect layer 3 (L3) checksum is inserted in transmitted IPv6 packets
without TCP, UDP or ICMP payloads . 16

2.9.2 The Ethernet MAC processes invalid extension headers in the received
IPv6 frames . 16

2.9.3 MAC stuck in the Idle state on receiving the TxFIFO flush command
exactly 1 clock cycle after a transmission completes 17

2.9.4 Transmit frame data corruption . 17

2.9.5 Successive write operations to the same register might not be fully
taken into account . 17

2.10 ADC peripheral limitations . 20

2.10.1 ADC sequencer modification during conversion 20

2.11 DAC peripheral limitations . 20

2.11.1 DMA underrun flag management . 20

2.11.2 DMA request not automatically cleared by DMAEN=0 21

2.12 SPI/I2S limitations . 21

2.12.1 Slave desynchronization in PCM short pulse mode 21

2.12.2 BSY bit may stay high at the end of a data transfer in Slave mode 22

3 Revision history . 23

List of tables STM32F74xxx STM32F75xxx

4/25 DocID027162 Rev 4

List of tables

Table 1. Device identification . 1
Table 2. Device summary . 1
Table 3. Cortex®-M7 core limitations and impact on microcontroller behavior 5
Table 4. Summary of silicon limitations . 6
Table 5. Impacted registers and bits. 18
Table 6. Document revision history . 23

DocID027162 Rev 4 5/25

STM32F74xxx STM32F75xxx ARM® 32-bit Cortex®-M7 with FPU limitations

24

1 ARM® 32-bit Cortex®-M7 with FPU limitations

An errata notice of the STM32F74xx and STM32F75xx core is available from
http://infocenter.arm.com.

All the described limitations are minor and related to the revision r0p1 of the Cortex®-M7
core. Refer to:

• ARM processor Cortex®-M7 (AT610) and Cortex®-M7 with FPU (AT611) software
developer errata notice

• ARM embedded trace macrocell CoreSight ETM-M7 (TM975) software developer
errata notice

Table 3 summarizes these limitations and their implications on the behavior of STM32F74xx
and STM32F75xx devices.

Table 3. Cortex®-M7 core limitations and impact on microcontroller behavior

ARM
ID

ARM category
Impact on STM32F74xxx and

STM32F75xxx devices

837070 Cat B Minor

834922 Cat B Minor

838169 Cat B (rare) Minor

839269 Cat C Minor

839169 Cat C Minor

837069 Cat C Minor

834971 Cat C Minor

834924 Cat C Minor

834923 Cat C Minor

833872 Cat C Minor

830969 Cat C Minor

http://infocenter.arm.com

STM32F74xxx and STM32F75xxx silicon limitations STM32F74xxx STM32F75xxx

6/25 DocID027162 Rev 4

2 STM32F74xxx and STM32F75xxx silicon limitations

Table 4 gives quick references to all documented limitations.

The legend for Table 4 is as follows:

A = workaround available,

N = no workaround available,

P = partial workaround available,

‘-’ and grayed = fixed.

Table 4. Summary of silicon limitations

Links to silicon limitations
Revision

Z

Section 2.1: System
limitations

Section 2.1.1: Missed ADC triggers from TIM1/TIM8,
TIM2/TIM5/TIM4/TIM6/TRGO or TGRO2 event

A

Section 2.1.2: Internal noise impacting the ADC accuracy A

Section 2.1.3: Wakeup from Standby mode when the back-up
SRAM regulator is enabled

A

Section 2.2: RTC
limitation

Section 2.2.1: Spurious tamper detection when disabling the
tamper channel

P

Section 2.3: I2C
peripheral limitations

Section 2.3.1: Wrong data sampling when data set-up time
(tSU;DAT) is smaller than one I2CCLK period

A

Section 2.3.2: Spurious bus error detection in Master mode A

Section 2.3.3: 10-bit Master mode: new transfer cannot be
launched if first part of the address has not been acknowledged
by the slave

A

Section 2.4: USART
peripheral limitations

Section 2.4.1: Start bit detected too soon when sampling for
NACK signal from the smartcard

N

Section 2.4.2: Break request can prevent the Transmission
Complete flag (TC) from being set

A

Section 2.4.3: nRTS is active while RE or UE = 0 A

Section 2.5: FMC
peripheral limitation

Section 2.5.1: Dummy read cycles inserted when reading
synchronous memories

N

Section 2.5.2: Wrong data read from a busy NAND memory A

Section 2.5.3: Missed clocks with continuous clock feature
enabled

A

Section 2.6:
QUADSPI peripheral
limitations

Section 2.6.1: Extra data written in the FIFO at the end of a read
transfer

A

Section 2.6.2: First nibble of data is not written after a dummy
phase

A

Section 2.6.3: Wrong data can be read in memory-mapped after
an indirect mode operation

A

DocID027162 Rev 4 7/25

STM32F74xxx STM32F75xxx STM32F74xxx and STM32F75xxx silicon limitations

24

Section 2.7:
SDMMC1 peripheral
limitations

Section 2.7.1: Wrong CCRCFAIL status after a response without
CRC is received

A

Section 2.7.2: MMC stream write of less than 8 bytes does not
work correctly

A

Section 2.8: BxCAN
peripheral limitations

Section 2.8.1: BxCAN time triggered mode not supported N

Section 2.9: Ethernet
peripheral limitations

Section 2.9.1: Incorrect layer 3 (L3) checksum is inserted in
transmitted IPv6 packets without TCP, UDP or ICMP payloads

A

Section 2.9.2: The Ethernet MAC processes invalid extension
headers in the received IPv6 frames

N

Section 2.9.3: MAC stuck in the Idle state on receiving the
TxFIFO flush command exactly 1 clock cycle after a
transmission completes

A

Section 2.9.4: Transmit frame data corruption A

Section 2.9.5: Successive write operations to the same register
might not be fully taken into account

A

Section 2.10: ADC
peripheral limitations

Section 2.10.1: ADC sequencer modification during conversion A

Section 2.11: DAC
peripheral limitations

Section 2.11.1: DMA underrun flag management A

Section 2.11.2: DMA request not automatically cleared by
DMAEN=0

A

Section 2.12:
SPI/I2S limitations

Section 2.12.1: Slave desynchronization in PCM short pulse
mode

A

Section 2.12.2: BSY bit may stay high at the end of a data
transfer in Slave mode

A

Table 4. Summary of silicon limitations (continued)

Links to silicon limitations
Revision

Z

STM32F74xxx and STM32F75xxx silicon limitations STM32F74xxx STM32F75xxx

8/25 DocID027162 Rev 4

2.1 System limitations

2.1.1 Missed ADC triggers from TIM1/TIM8, TIM2/TIM5/TIM4/TIM6/TRGO or
TGRO2 event

Description

The ADC external trigger for regular and injected channels by the TIM1, TIM8, TIM2, TIM5,
TIM4 and TIM6 TRGO or TRGO2 events are missed at the following conditions:

• Prescaler enabled on the PCLK2 clock.

• TIMxCLK = 2xADCCLK and the master mode selection (MMS or MMS2 bits in the
TIMx_CR2 timer register) as reset, update, or compare pulse configuration.

• TIMxCLK = 4xADCCLK.

Workarounds

• For TIM1 and TIM8 TRGO or TRGO 2 events: select the trigger detection on both the
rising and falling edges. The EXTEN[1:0] or JEXTEN[1:0] bits must be set to 0x11 in
the ADC_CR2 register.

• For TIM2/TIM4/TIM5/TIM6/ TRGO or TGRO2 events: Enable the DAC peripheral clock
in the RCC_APB1ENR register.

2.1.2 Internal noise impacting the ADC accuracy

Description

An internal noise generated on VDD supplies and propagated internally may impact the ADC
accuracy.

This noise is always active whatever the power mode of the MCU (Run or Sleep).

Workaround

To adapt the accuracy level to the application requirements, set one of the following options:

• Option1

Set the ADCDC1 bit in the PWR_CR register.

• Option2

Set the corresponding ADCxDC2 bit in the SYSCFG_PMC register.

Only one option can be set at a time.

For more details on option1 and option2 mechanisms, refer to AN4073

DocID027162 Rev 4 9/25

STM32F74xxx STM32F75xxx STM32F74xxx and STM32F75xxx silicon limitations

24

2.1.3 Wakeup from Standby mode when the back-up SRAM regulator
is enabled

Description

When writing to the PWR_CSR1 register to enable or disable the back-up SRAM regulator,
if the EIWUP bit is overwritten 0, the RTC wakeup event (alarm, RTC Tamper, RTC
TimeStamp or RTC wakeup time) does not wake up the system from Standby mode.

Workaround

For each write access on the PWR_CSR1 register to enable or disable the back-up SRAM
regulator, the EIWKUP bit must be set to 1 in order to enable a wakeup from Standby mode
using RTC events.

2.2 RTC limitation

2.2.1 Spurious tamper detection when disabling the tamper channel

Description

If the tamper detection is configured for a detection on the falling edge event (TAMPFLT=00
and TAMPxTRG=1) and if the tamper event detection is disabled when the tamper pin is at
high level, a false tamper event is detected.

Workaround

The false tamper event detection cannot be avoided, but the backup registers erase can be
avoided by setting the TAMPxNOERASE bit before clearing the TAMPxE bit. The two bits
must be written in two separate RTC_TAMPCR write accesses.

2.3 I2C peripheral limitations

2.3.1 Wrong data sampling when data set-up time (tSU;DAT) is smaller than
one I2CCLK period

Description

The I2C bus specification and user manual specify a minimum data set-up time (tSU;DAT).

The I2C SDA line is not correctly sampled when tSU;DAT is smaller than one I2CCLK (I2C
clock) period; the previous SDA value is sampled instead of the current one. This can result
in a wrong slave address reception, a wrong received data byte, or a wrong received
acknowledge bit.

STM32F74xxx and STM32F75xxx silicon limitations STM32F74xxx STM32F75xxx

10/25 DocID027162 Rev 4

Workaround

Increase the I2CCLK frequency to get the I2CCLK period smaller than the transmitter
minimum data set-up time. Or, if it is possible, increase the transmitter minimum data set-up
time.

• 250 ns in Standard-mode.

• 100 ns in Fast-mode.

• 50 ns in Fast-mode Plus.

2.3.2 Spurious bus error detection in Master mode

Description

In Master mode, a bus error can be detected by mistake, so the BERR flag can be wrongly
raised in the status register. This will generate a spurious Bus Error interrupt if the interrupt
is enabled. A bus error detection has no effect on the transfer in master mode, therefore the
I2C transfer can continue normally.

Workaround

If a bus error interrupt is generated in Master mode, the BERR flag must be cleared by
software. No other action is required and the on-going transfer can be handled normally.

2.3.3 10-bit Master mode: new transfer cannot be launched if first
part of the address has not been acknowledged by the slave

Description

In Master mode, the master automatically sends a STOP bit when the slave has not
acknowledged a byte during the address transmission.

In the 10-bit addressing mode, if the first part of the 10-bit address (corresponding to 10-bit
header + 2 MSB) has not been acknowledged by the slave, the STOP bit is sent but the
Start bit is not cleared and the master cannot launch a new transfer.

Workaround

When the I2C is configured in 10-bit addressing Master mode and the NACKF status flag is
set in the I2C_ISR register while the Start bit is still set in the I2C_CR2 register, then
proceed as follows:

1. Wait for the STOP condition detection (STOPF = 1 in I2C_ISR register).

2. Disable the I2C peripheral.

3. Wait for a minimum of 3 APB cycles.

4. Enable the I2C peripheral again.

DocID027162 Rev 4 11/25

STM32F74xxx STM32F75xxx STM32F74xxx and STM32F75xxx silicon limitations

24

2.4 USART peripheral limitations

2.4.1 Start bit detected too soon when sampling for NACK signal
from the smartcard

Description

In the ISO7816, when a character parity error is incorrect, the smartcard receiver shall
transmit a NACK error signal at (10.5 +/- 0.2) etu after the character Start bit falling edge. In
this case, the USART transmitter should be able to detect correctly the NACK signal by
sampling at (11.0 +/-0.2) etu after the character Start bit falling edge.

The USART peripheral used in smartcard mode doesn't respect the (11 +/-0.2) etu timing,
and when the NACK falling edge arrives at 10.68 etu or later, the USART might misinterpret
this transition as a Start bit even if the NACK is correctly detected.

Workaround

None.

2.4.2 Break request can prevent the Transmission Complete flag (TC) from
being set

Description

After the end of transmission of a data (D1), the Transmission Complete (TC) flag will not be
set in the following conditions:

• CTS hardware flow control is enabled.

• D1 is being transmitted.

• A break transfer is requested before the end of D1 transfer.

• nCTS is de-asserted before the end of transfer of D1.

Workaround

If the application needs to detect the end of transfer of the data, the break request should be
done after making sure that the TC flag is set.

2.4.3 nRTS is active while RE or UE = 0

Description

The nRTS line is driven low as soon as the RTSE bit is set even if the USART is disabled
(UE = 0) or the receiver is disabled (RE = 0) i.e. not ready to receive data.

Workaround

Configure the I/O used for nRTS as alternate function after setting the UE and RE bits.

STM32F74xxx and STM32F75xxx silicon limitations STM32F74xxx STM32F75xxx

12/25 DocID027162 Rev 4

2.5 FMC peripheral limitation

2.5.1 Dummy read cycles inserted when reading synchronous memories

Description

When performing a burst read access to a synchronous memory, two dummy read accesses
are performed at the end of the burst cycle whatever the type of AHB burst access.
However, the extra data values which are read are not used by the FMC and there is no
functional failure.

Workaround

None.

2.5.2 Wrong data read from a busy NAND memory

Description

When the read command is issued to the NAND memory, the R/B signal gets activated upon
the de-assertion of the chip select. In case a read transaction is pending, the NAND
controller might not detect the R/B signal (connected to NWAIT) previously asserted, so that
it will sample a wrong data. The problem occurs only when using MEMSET timing is
configured to 0 or while ATTHOLD timing is configured to 0 or 1.

Workaround

Either configure MEMSET timing to a value greater than 0 or ATTHOLD timing to a value
greater than 1.

2.5.3 Missed clocks with continuous clock feature enabled

Description

When the continuous clock feature is enabled, the FMC_CLK clock can be switched off in
the following conditions:

• The FMC_CLK clock divided by 2

• An asynchronous byte transaction is performed on a FMC bank configured in 32-bit
memory data width. When the FMC_CLK clock for static memories is switched OFF, it
will be switched ON when issuing a synchronous transaction or any asynchronous
transaction different from byte access on 32-bit memory width.

Workaround

• When issuing a byte transaction on 32-bit asynchronous memories while the
continuous clock feature is enabled, do not use the FMC_CLK clock divider ratio of 2.

DocID027162 Rev 4 13/25

STM32F74xxx STM32F75xxx STM32F74xxx and STM32F75xxx silicon limitations

24

2.6 QUADSPI peripheral limitations

2.6.1 Extra data written in the FIFO at the end of a read transfer

Description

When all the conditions listed below are gathered:

• QUADSPI is used in indirect mode.

• QUADSPI clock is AHB/2 (PRESCALER = 0x01 in the QUADSPI_CR).

• QUADSPI is in quad mode (DMODE = 0b11 in the QUADSPI_CCR).

• QUADSPI is in DDR mode (DDRM = 0b1 in the QUADSPI_CCR).

An extra data is incorrectly written in the FIFO when a data is read at the same time that the
FIFO gets full at the end of a read transfer.

Workarounds

One of the two workarounds listed below can be done:

• Read out the extra data until the BUSY flag goes low and discard it.

• Request an abort after reading out all the correct received data from FIFO in order to
flush FIFO and have the busy low. Abort will keep the last register configuration (set the
ABORT bit in the QUADSPI_CR register).

2.6.2 First nibble of data is not written after a dummy phase

Description

The first nibble of data to be written to the external Flash memory is lost in the following
conditions:

• The QUADSPI is used in the indirect write mode

• And at least one dummy cycle is used

Workaround

Use alternate-bytes instead of a dummy phase in order to add a latency between the
address phase and the data phase. This works only if the number of dummy cycles
corresponds to a multiple of 8 bits of data.

Example: to generate

• 1 dummy cycle: send 1 alternate-byte, possible only in 4 data lines (DDR mode or
Dual-flash SDR mode)

• 2 dummy cycles: send 1 alternate-byte in 4 data lines (SDR mode)

• 4 dummy cycles: send 2 alternate-bytes in 4 data lines (SDR mode) or send 1
alternate-byte in 2 data lines (SDR mode)

• 8 dummy cycles: send 1 alternate-byte in 1 data line (SDR mode)

STM32F74xxx and STM32F75xxx silicon limitations STM32F74xxx STM32F75xxx

14/25 DocID027162 Rev 4

2.6.3 Wrong data can be read in memory-mapped after an indirect mode
operation

Description

Wrong data can be read with the first memory-mapped read request when the Quad-SPI
peripheral enters in memory-mapped mode without reset of both LSB bits in the
QUADSPI_AR[1:0] address register.

Workaround

The QUADSPI_AR register must be reset just before entering in memory-mapped mode.
This can be done in two different ways, depending on the current Quad-SPI operating
mode:

1. Indirect read mode:

a) Reset the address register

b) Make an abort request to stop the reading and clear the busy bit

c) Enter in memory-mapped mode.

2. Indirect write mode:

a) Reset the address register

b) Enter in memory-mapped mode

Note: The user should take care to not write to the QUADSPI_DR register after resetting the
address register.

2.7 SDMMC1 peripheral limitations

2.7.1 Wrong CCRCFAIL status after a response without CRC is received

Description

The CRC is calculated even if the response to a command does not contain any CRC field.
As a consequence, after the SDIO command IO_SEND_OP_COND (CDM5) is sent, the
CCRCFAIL bit of the SDIO_STA register is set.

Workaround

The CCRCFAIL bit in the SDIO_STA register shall be ignored by the software CCRCFAIL
must be cleared by setting the CCRCFAILC bit in the SDIO_ICR register after reception of
the response to the CMD5 command.

DocID027162 Rev 4 15/25

STM32F74xxx STM32F75xxx STM32F74xxx and STM32F75xxx silicon limitations

24

2.7.2 MMC stream write of less than 8 bytes does not work correctly

Description

When the SDMMC host starts a stream write (WRITE_DAT_UNTIL_STOP CMD20), the
number of bytes to transfer is not known by the card.

The card will write data from the host until a STOP_TRANSMISSION (CMD12) command is
received.

Use WAITRESP value equal to “00” to indicate to SDMMC CPSM that no response is
expected.

The WAITPEND bit 9 of the SDMMC_CMD register is set to synchronize the sending of the
STOP_TRANSMISSION (CMD12) command with the data flow.

When WAITPEND is set, the transmission of this command stays pending until 50 data bits
including the STOP bit remain to transmit.

For a stream write of less than 8 bytes, the STOP_TRANSMISSION (CMD12) command
should be started before the data transfer starts. Instead of this, the data write and the
command sending are started simultaneously.

It implies that when less than 8 bytes have to be transmitted, (8 - DATALENGTH) bytes are
programmed to 0xFF in the card after the last byte programmed (where DATALENGTH is
the number of data bytes to be transferred).

Workaround

Do not use stream write WRITE_DAT_UNTIL_STOP (CMD20) with a DATALENGTH less
then 8 bytes. Use set block length (SET_BLOCKLEN: CMD16) followed by the single block
write command (WRITE_BLOCK_CMD24) instead of the stream write (CMD20) with the
desired block length.

2.8 BxCAN peripheral limitations

2.8.1 BxCAN time triggered mode not supported

Description

The time triggered communication mode described in the reference manual is not
supported. As a result the time stamp values are not available. The TTCM bit must be kept
cleared in the CAN_MCR register (time triggered communication mode disabled).

Workaround

None.

STM32F74xxx and STM32F75xxx silicon limitations STM32F74xxx STM32F75xxx

16/25 DocID027162 Rev 4

2.9 Ethernet peripheral limitations

2.9.1 Incorrect layer 3 (L3) checksum is inserted in transmitted IPv6 packets
without TCP, UDP or ICMP payloads

Description

The application provides the per-frame control to instruct the MAC to insert the L3
checksums for TCP, UDP and ICMP packets. When an automatic checksum insertion is
enabled and the input packet is an IPv6 packet without the TCP, UDP or ICMP payload, then
the MAC may incorrectly insert a checksum into the packet. For IPv6 packets without a TCP,
UDP or ICMP payload, the MAC core considers the next header (NH) field as the extension
header and continues to parse the extension header. Sometimes, the payload data in such
packets matches the NH field for TCP, UDP or ICMP and, as a result, the MAC core inserts
a checksum.

Workaround

When the IPv6 packets have a TCP, UDP or ICMP payload, enable checksum insertion for
transmit frames, or bypass checksum insertion by using the CIC (checksum insertion
control) bits in TDES0 (bits 23:22).

2.9.2 The Ethernet MAC processes invalid extension headers in the received
IPv6 frames

Description

In the IPv6 frames, there can be zero or some extension headers preceding the actual IP
payload. The Ethernet MAC processes the following extension headers defined in the IPv6
protocol: Hop-by-Hop options header, routing header and destination options header.
All the extension headers, except the Hop-by-Hop extension header, can be present
multiple times and in any order before the actual IP payload. The Hop-by-Hop extension
header, if present, has to come immediately after the IPv6’s main header.

The Ethernet MAC processes all (valid or invalid) extension headers including the Hop-by-
Hop extension headers that are present after the first extension header. For this reason, the
GMAC core will accept IPv6 frames with invalid Hop-by-Hop extension headers. As a
consequence, it will accept any IP payload as valid IPv6 frames with TCP, UDP or ICMP
payload, and then incorrectly update the receive status of the corresponding frame.

Workaround

None.

DocID027162 Rev 4 17/25

STM32F74xxx STM32F75xxx STM32F74xxx and STM32F75xxx silicon limitations

24

2.9.3 MAC stuck in the Idle state on receiving the TxFIFO flush command
exactly 1 clock cycle after a transmission completes

Description

When the software issues a TxFIFO flush command, the transfer of frame data stops (even
in the middle of a frame transfer). The TxFIFO read controller goes into the idle state
(TFRS=00 in ETH_MACDBGR) and then resumes its normal operation.

However, if the TxFIFO read controller receives the TxFIFO flush command exactly one
clock cycle after receiving the status from the MAC, the controller remains stuck in the Idle
state and stops transmitting frames from the TxFIFO. The system can recover from this
state only with a reset (e.g. a soft reset).

Workaround

Do not use the TxFIFO flush feature.

If TXFIFO flush is really needed, wait until the TxFIFO is empty prior to using the TxFIFO
flush command.

2.9.4 Transmit frame data corruption

The frame data is corrupted when the TxFIFO is repeatedly transitioning from non empty to
empty and then back to non empty.

Description

The frame data may get corrupted when the TxFIFO is repeatedly transitioning from non
empty to empty for a very short period, and then from empty to non empty, without causing
an underflow.

This transitioning from non empty to empty and back to non empty happens when the rate at
which the data is being written to the TxFIFO is almost equal to or a little less than the rate
at which the data is being read.

This corruption cannot be detected by the receiver when the CRC is inserted by the MAC,
as the corrupted data is used for the CRC computation.

Workaround

Use the Store-and-Forward mode: TSF=1 (bit 21 in ETH_DMAOMR). In this mode, the data
is transmitted only when the whole packet is available in the TxFIFO.

2.9.5 Successive write operations to the same register might not be fully
taken into account

Description

A write to a register might not be fully taken into account if a previous write to the same
register is performed within a time period of four TX_CLK/RX_CLK clock cycles. When this
error occurs, reading the register returns the most recently written value, but the Ethernet
MAC continues to operate as if the latest write operation never occurred.

See Table 5: Impacted registers and bits for the registers and bits impacted by this limitation.

STM32F74xxx and STM32F75xxx silicon limitations STM32F74xxx STM32F75xxx

18/25 DocID027162 Rev 4

Table 5. Impacted registers and bits

Register name Bit number Bit name

DMA registers

ETH_DMABMR 7 EDFE

ETH_DMAOMR

26 DTCEFD

25 RSF

20 FTF

7 FEF

6 FUGF

4:3 RTC

GMAC registers

ETH_MACCR

25 CSTF

23 WD

22 JD

19:17 IFG

16 CSD

14 FES

13 ROD

12 LM

11 DM

10 IPCO

9 RD

7 APCS

6:5 BL

4 DC

3 TE

2 RE

ETH_MACFFR - MAC frame filter register

ETH_MACHTHR 31:0 Hash Table High Register

ETH_MACHTLR 31:0 Hash Table Low Register

ETH_MACFCR

31:16 PT

7 ZQPD

5:4 PLT

3 UPFD

2 RFCE

1 TFCE

0 FCB/BPA

DocID027162 Rev 4 19/25

STM32F74xxx STM32F75xxx STM32F74xxx and STM32F75xxx silicon limitations

24

ETH_MACVLANTR
16 VLANTC

15:0 VLANTI

ETH_MACRWUFFR - all remote wakeup registers

ETH_MACPMTCSR

31 WFFRPR

9 GU

2 WFE

1 MPE

0 PD

ETH_MACA0HR - MAC address 0 high register

ETH_MACA0LR - MAC address 0 low register

ETH_MACA1HR - MAC address 1 high register

ETH_MACA1LR - MAC address 1 low register

ETH_MACA2HR - MAC address 2 high register

ETH_MACA2LR - MAC address 2 low register

ETH_MACA3HR - MAC address 3 high register

ETH_MACA3LR - MAC address 3 low register

IEEE 1588 time stamp registers

ETH_PTPTSCR

18 TSPFFMAE

17:16 TSCNT

15 TSSMRME

14 TSSEME

13 TSSIPV4FE

12 TSSIPV6FE

11 TSSPTPOEFE

10 TSPTPPSV2E

9 TSSSR

8 TSSARFE

5 TSARU

3 TSSTU

2 TSSTI

1 TSFCU

0 TSE

Table 5. Impacted registers and bits (continued)

Register name Bit number Bit name

STM32F74xxx and STM32F75xxx silicon limitations STM32F74xxx STM32F75xxx

20/25 DocID027162 Rev 4

Workarounds

Two workarounds could be applicable:

• Ensure a delay of four TX_CLK/RX_CLK clock cycles between the successive write
operations to the same register.

• Make several successive write operations without delay, then read the register when all
the operations are complete, and finally reprogram it after a delay of four
TX_CLK/RX_CLK clock cycles.

2.10 ADC peripheral limitations

2.10.1 ADC sequencer modification during conversion

Description

If an ADC conversion is started by software (writing the SWSTART bit), and if the
ADC_SQRx or ADC_JSQRx registers are modified during the conversion, the current
conversion is reset and the ADC does not restart a new conversion sequence automatically.
If an ADC conversion is started by hardware trigger, this limitation does not apply. The ADC
restarts a new conversion sequence automatically.

Workaround

When an ADC conversion sequence is started by software, a new conversion sequence can
be restarted only by setting the SWSTART bit in the ADC_CR2 register.

2.11 DAC peripheral limitations

2.11.1 DMA underrun flag management

Description

If the DMA is not fast enough to input the next digital data to the DAC, as a consequence,
the same digital data is converted twice. In these conditions, the DMAUDR flag is set, which
usually leads to disable the DMA data transfers. This is not the case: the DMA is not
disabled by DMAUDR=1, and it keeps serving the DAC.

Workaround

To disable the DAC DMA stream, reset the EN bit (corresponding to the DAC DMA stream)
in the DMA_SxCR register.

DocID027162 Rev 4 21/25

STM32F74xxx STM32F75xxx STM32F74xxx and STM32F75xxx silicon limitations

24

2.11.2 DMA request not automatically cleared by DMAEN=0

Description

If the application wants to stop the current DMA-to-DAC transfer, the DMA request is not
automatically cleared by DMAEN=0, or by DACEN=0.

If the application stops the DAC operation while the DMA request is high, the DMA request
will be pending while the DAC is reinitialized and restarted; with the risk that a spurious
unwanted DMA request is served as soon as the DAC is re-enabled.

Workaround

To stop the current DMA-to-DAC transfer and restart, the following sequence should be
applied:

1. Check if DMAUDR is set.

2. Clear the DAC/DMAEN bit.

3. Clear the EN bit of the DAC DMA/Stream.

4. Reconfigure by software the DAC, DMA, triggers.

5. Restart the application.

2.12 SPI/I2S limitations

2.12.1 Slave desynchronization in PCM short pulse mode

Description

When the I2S is configured in the Slave PCM short frame synchronization mode and the
asynchronous start is disabled (Bit ASTRTEN of the SPIx_I2SCFGR register set to 0), the
data received or transmitted by the slave might be corrupted. Note that having the
ASTRTEN bit set to 0 in the case of the PCM short frame synchronization mode is useless
as the width of the frame synchronization pulse is one period of the bit clock.

Workaround

If the I2S is configured in the Slave PCM short frame synchronization mode, the bit
ASTRTEN must be set to 1. For all other I2S modes the bit ASTRTEN must be set 0.

STM32F74xxx and STM32F75xxx silicon limitations STM32F74xxx STM32F75xxx

22/25 DocID027162 Rev 4

2.12.2 BSY bit may stay high at the end of a data transfer in Slave mode

Description

The BSY flag may sporadically remain high at the end of a data transfer in Slave mode. The
issue appears when an accidental synchronization happens between the internal CPU clock
and the external SCK clock provided by the master.

This is related to the end of data transfer detection while the SPI is enabled in Slave mode.

As a consequence, the end of data transaction may be not recognized when the software
needs to monitor it (e.g. at the end of session before entering the low-power mode or before
direction of data line has to be changed at half duplex bidirectional mode). The BSY flag is
unreliable to detect the end of any data sequence transaction.

Workaround

When the NSS hardware management is applied and the NSS signal is provided by the
master, the end of a transaction can be detected by the NSS polling by the slave.

• If the SPI receiving mode is enabled, the end of a transaction with master can be
detected by the corresponding RXNE event signalizing the last data transfer
completion.

• In SPI transmit mode, the user can check the BSY under timeout corresponding to the
time necessary to complete the last data frame transaction. The timeout should be
measured from TXE event signalizing the last data frame transaction start (it is raised
once the second bit transaction is ongoing). Either BSY becomes low normally or the
timeout expires when the synchronization issue happens.

When upper workarounds are not applicable, the following sequence can be used to
prevent the synchronization issue at SPI transmit mode.

1. Write last data to data register

2. Poll TXE until it becomes high to ensure the data transfer has started

3. Disable SPI by clearing SPE while the last data transfer is still ongoing

4. Poll the BSY bit until it becomes low

5. The BSY flag works correctly and can be used to recognize the end of the transaction.

Note: This workaround can be used only when CPU has enough performance to disable SPI after
the TXE event is detected while the data frame transfer is still ongoing. It is impossible to
achieve it when the ratio between CPU and SPI clock is low and the data frame is short
especially. In this specific case the timeout can be measured from TXE, while calculating a
fixed number of CPU clock periods corresponding to the time necessary to complete the
data frame transaction.

DocID027162 Rev 4 23/25

STM32F74xxx STM32F75xxx Revision history

24

3 Revision history

Table 6. Document revision history

Date Revision Changes

19-Jan-2015 1 Initial release.

26-May-2015 2

Updated Section 2.7: SDMMC1 peripheral limitations removing limitation:

– Section: SDIO interrupt period not correctly handled when 4 data lines
are selected.

– Section: Wait for response bits “10” configuration does not work
correctly.

Added Section 2.4: USART peripheral limitations:

– Section 2.4.1: Start bit detected too soon when sampling for NACK
signal from the smartcard.

– Section 2.4.2: Break request can prevent the Transmission Complete
flag (TC) from being set.

– Section 2.4.3: nRTS is active while RE or UE = 0.

Updated Section 2.1: System limitations removing:

– Section: Extra current consumption in Standby mode when PC13 or
PI8 pins are left floating.

– Section: Extra consumption in Standby mode when wakeup pins
configured in falling edge.

– Section: Standby mode entry.

– Section LSE Oscillator not working at hot temperature.

– Section: Bypass regulator mode forcing all wakeup pins in input mode.

– Section: ADC external triggers unavailability

– Section: User option byte update when RDP level 1 is active and BOOT
pin is high

Updated Section 2.1.1: Missed ADC triggers from TIM1/TIM8,
TIM2/TIM5/TIM4/TIM6/TRGO or TGRO2 event titles and description.

Updated the whole document:

– Changing revision A into the revision Z.

– Updating with STM32F75xxx and STM32F74xxx.

Updated Table 2: Device summary adding STM32F745xx RPNs.

Removed “NAND/PCCard transaction and wait timing” limitation.

Added Section 1: ARM® 32-bit Cortex®-M7 with FPU limitations.

07-Jan-2016 3

Added limitations:

– Section 2.1.3: Wakeup from Standby mode when the back-up SRAM
regulator is enabled. in System limitation section.

– Section 2.12.1: Slave desynchronization in PCM short pulse mode in
I2S limitation section.

– Section 2.3.2: Spurious bus error detection in Master mode in I2C
limitation section.

– Section 2.5.2: Wrong data read from a busy NAND memory and
Section 2.5.3: Missed clocks with continuous clock feature enabled in
FMC limitation section.

Revision history STM32F74xxx STM32F75xxx

24/25 DocID027162 Rev 4

24-Nov-2016 4

I2C2 limitation:

– Added Section 2.3.3: 10-bit Master mode: new transfer cannot be
launched if first part of the address has not been acknowledged by the
slave.

QUADSPI limitations:

– Added Section 2.6.2: First nibble of data is not written after a dummy
phase.

– Added Section 2.6.3: Wrong data can be read in memory-mapped after
an indirect mode operation.

Table 6. Document revision history (continued)

Date Revision Changes

DocID027162 Rev 4 25/25

STM32F74xxx STM32F75xxx

25

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

	Table 1. Device identification
	Table 2. Device summary
	1 ARM® 32-bit Cortex®-M7 with FPU limitations
	Table 3. Cortex®-M7 core limitations and impact on microcontroller behavior

	2 STM32F74xxx and STM32F75xxx silicon limitations
	Table 4. Summary of silicon limitations
	2.1 System limitations
	2.1.1 Missed ADC triggers from TIM1/TIM8, TIM2/TIM5/TIM4/TIM6/TRGO or TGRO2 event
	2.1.2 Internal noise impacting the ADC accuracy
	2.1.3 Wakeup from Standby mode when the back-up SRAM regulator is enabled

	2.2 RTC limitation
	2.2.1 Spurious tamper detection when disabling the tamper channel

	2.3 I2C peripheral limitations
	2.3.1 Wrong data sampling when data set-up time (tSU;DAT) is smaller than one I2CCLK period
	2.3.2 Spurious bus error detection in Master mode
	2.3.3 10-bit Master mode: new transfer cannot be launched if first part of the address has not been acknowledged by the slave

	2.4 USART peripheral limitations
	2.4.1 Start bit detected too soon when sampling for NACK signal from the smartcard
	2.4.2 Break request can prevent the Transmission Complete flag (TC) from being set
	2.4.3 nRTS is active while RE or UE = 0

	2.5 FMC peripheral limitation
	2.5.1 Dummy read cycles inserted when reading synchronous memories
	2.5.2 Wrong data read from a busy NAND memory
	2.5.3 Missed clocks with continuous clock feature enabled

	2.6 QUADSPI peripheral limitations
	2.6.1 Extra data written in the FIFO at the end of a read transfer
	2.6.2 First nibble of data is not written after a dummy phase
	2.6.3 Wrong data can be read in memory-mapped after an indirect mode operation

	2.7 SDMMC1 peripheral limitations
	2.7.1 Wrong CCRCFAIL status after a response without CRC is received
	2.7.2 MMC stream write of less than 8 bytes does not work correctly

	2.8 BxCAN peripheral limitations
	2.8.1 BxCAN time triggered mode not supported

	2.9 Ethernet peripheral limitations
	2.9.1 Incorrect layer 3 (L3) checksum is inserted in transmitted IPv6 packets without TCP, UDP or ICMP payloads
	2.9.2 The Ethernet MAC processes invalid extension headers in the received IPv6 frames
	2.9.3 MAC stuck in the Idle state on receiving the TxFIFO flush command exactly 1 clock cycle after a transmission completes
	2.9.4 Transmit frame data corruption
	2.9.5 Successive write operations to the same register might not be fully taken into account
	Table 5. Impacted registers and bits

	2.10 ADC peripheral limitations
	2.10.1 ADC sequencer modification during conversion

	2.11 DAC peripheral limitations
	2.11.1 DMA underrun flag management
	2.11.2 DMA request not automatically cleared by DMAEN=0

	2.12 SPI/I2S limitations
	2.12.1 Slave desynchronization in PCM short pulse mode
	2.12.2 BSY bit may stay high at the end of a data transfer in Slave mode

	3 Revision history
	Table 6. Document revision history

