TECHNICAL NOTE

TN219

Root Memory Usage Reduction Tips

Customers with programs that are near the limits of root code and/or root data space usage will be inter-
ested in these tips for saving root space. The usage of root code and data by the BIOS in Dynamic C 7.20
increased from previous versions. A follow-on release will reduce BIOS root space usage, but probably
not to the level of usage in previous versions.

Increasing Available Root Code Space
Increasing the available amount of root code space may be done in the following ways:

e Use#memmap xmem

Thiswill cause C functions that are not explicitly declared as “root” to be placed in xmem.
Note that the only reason to locate a C function in root is because it modifies the XPC register
(in embedded assembly code), or it isan ISR. The only performance difference in running code
in xmem isin getting there and returning. It takes atotal of 12 additional machine cycles
because of the differences between cal1/1call, and ret/lret.

e |ncrease DATAORG

Root code space can be increased by increasing DATAORG inRabbitBios. c inincrements of
0x1000. Unfortunately, this comes at the expense of root data space, but there are ways of
reducing that too.

e Reduce usage of root constants and string literals

Shortening literal strings and reusing them will save root space. The compiler, starting with
version 7.20, automatically reusesidentical string literals.

These two statements :
printf (“This is a literal string”);
sprintf (buf, “This is a literal string”);

will share the same literal string space whereas:
sprintf (buf, “this is a literal string”);

will useits own space since the string is different.

022-0066 Rev. B www.rabbit.com 1


http://www.rabbit.com

e Usexdatato declarelargetablesof initialized data

If you have large tables of initialized data, consider using the keyword xdata to declare them.
The disadvantage is that data cannot be accessed directly with pointers. The function
xmem2root () alowsxdatato be copied to aroot buffer when needed.

// Thisusesroot code space
const int root table[8] =
{300,301,302,103,304,305,306,307};
// Thisdoes not
xdata xdata table {300,301,302,103,304,305,306,307};
main () {

// thisonly usestemporary stack space

auto int table([8];

xmem2root (table, xdata table, 16);
// now the xmem data can be accessed
// viaal6 bit pointer into the table

}
Both methods, const and xdata, create initialized datain flash at compile time, so the data
cannot be rewritten directly.

e Usexstring to declare a table of strings

The keyword xstring declares atable of stringsin extended flash memory. The disadvantage
isthat the strings cannot be accessed directly with pointers, since the table entries are 20-bit
physical addresses. Asillustrated above, the function xmem2root () may be used to store the
table in temporary stack space.

// Thisusesroot code space
const char * namel[] =
{“string 1", . . . “string n"};
// Thisdoes not
xstring name {“string 1”, . . . “string n”};
Both methods, const and xstring, createinitialized datain flash at compile time, so the
data cannot be rewritten directly.

e Turn off selected debugging features
Starting with Dynamic C 7.20, watch expressions, breakpoints, and single-stepping can be
selectively disabled to save some root code space. From Dynamic C's main menu, select
“Options’ and then “Project Options.” Look on the Debugger tab in the resulting Options dia-
log.

2 www.rabbit.com TN219


http://www.rabbit.com

e Place assembly language code into xmem

Pure assembly language code functions can go into xmem starting with Dynamic C 7.20:
#asm
foo root::
[some instructions]
ret
#endasm

The same function in xmem:

#asm xmem

foo xmem: :

[some instructions]

lret ; uselret instead of ret
#endasm

The correct calsarecall foo root andlcall foo xmem. If theassembly function
modifies the X PC register with

LD XPC, A

it should not be placed in xmem. If it accesses data on the stack directly, the datawill be one
byte away from where it would be with aroot function because 1cal1 pushes the value of
XPC onto the stack.

TN219 www.rabbit.com


http://rabbit.com

Increasing Available Root Data Space
Increasing the available amount of root data space may be donein the following ways:

e Decrease DATAORG

Root data space can be increased by decreasing DATAORG inRabbitBios. c inincrements of
0x1000. This comes at the expense of root code space.

e Use#classauto

The default storage class of Dynamic C is static. This can be changed to auto using the direc-
tive#class auto. Thiswill makelocal variableswith no explicit storage class specified in
functions default to auto. If you need the value in alocal function to be retained between calls,
it should be static. The default program stack sizeis 2048 (0x800) bytesif not using uC/OS-II.
This could be increased to 0x1000 at most. It already isincreased if the TCP/IP stack is used.
The code to changeitisinprogram.1ib:

#ifndef MCOS

#define DEFAULTSTACKSIZE 0x1000 ; increased from 0x800
#telse

#define DEFAULTSTACKSIZE 0x200
#endif

Deeply nested calls with alot of local auto arrays could exceed this limit, but 0x1000 should
ordinarily be plenty of space. Using more temporary stack space for variables frees up static
root data space for global and local static variables.

e Usexmem for large RAM buffers

xalloc () can be used to alocate chunks of RAM in extended memory. The memory cannot
be accessed by a 16 bit pointer, so using it can be more difficult. The functions xmem2root ()
and root2xmem () are available for moving from root to xmem and xmem to root. Large buff-
ers used by Dynamic C libraries are already allocated from RAM in extended memory.

4 www.rabbit.com TN219


http://www.rabbit.com

	Root Memory Usage Reduction Tips
	Increasing Available Root Code Space
	• Use #memmap xmem
	• Increase DATAORG
	• Reduce usage of root constants and string literals
	• Use xdata to declare large tables of initialized data
	• Use xstring to declare a table of strings
	• Turn off selected debugging features
	• Place assembly language code into xmem

	Increasing Available Root Data Space
	• Decrease DATAORG
	• Use #class auto
	• Use xmem for large RAM buffers



