400 Watt Peak Power Zener Transient Voltage Suppressor ### Unidirectional The NSA5.0AFT3G is designed to protect voltage sensitive components from high voltage, high energy transients. It has excellent clamping capability, high surge capability, low zener impedance and a fast response time. The NSA5.0AFT3G is ideally suited for use in communication systems, automotive, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications. #### **Features** - Peak Power 400 W @ 1 ms - ESD Rating of Class 3 (> 16 kV) per Human Body Model - ESD Rating IEC 61000-4-2 (> 30 kV) - Response Time is Typically < 1 ns - Flat Handling Surface for Accurate Placement - Package Design for Top Slide or Bottom Circuit Board Mounting - Low Profile Package - This is a Pb-Free Device #### **Mechanical Characteristics:** **CASE:** Void-free, transfer-molded plastic FINISH: All external surfaces are corrosion resistant and leads are readily solderable MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES: 260°C for 10 Seconds POLARITY: Cathode indicated by molded polarity notch or polarity band **MOUNTING POSITION: Any** #### Littelfuse.com ## PLASTIC SURFACE MOUNT ZENER OVERVOLTAGE TRANSIENT SUPPRESSOR 400 W PEAK POWER SMA-FL CASE 403AA #### **MARKING DIAGRAM** 4AA = Device Code A = Assembly Location Y = Year WW = Work Week = Pb-Free Package #### ORDERING INFORMATION | Device | Package | Shipping | | | | |-------------|---------------------|------------------|--|--|--| | NSA5.0AFT3G | SMA-FL
(Pb-Free) | 5000/Tape & Reel | | | | #### **DEVICE MARKING INFORMATION** See specific marking information in the device marking column of the Electrical Characteristics table on page 2 of this data sheet. 1 #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |--|------------------------------------|-------------------|--------------------| | Peak Power Dissipation (Note 1) @ T _L = 25°C, Pulse Width = 1 ms | P _{PK} | 400 | W | | DC Power Dissipation @ T _L = 75°C Measured Zero Lead Length (Note 2) Derate Above 75°C Thermal Resistance from Junction to Lead | P _D | 1.5
20
50 | W
mW/°C
°C/W | | DC Power Dissipation (Note 3) @ T _A = 25°C Derate Above 25°C Thermal Resistance from Junction to Ambient | P _D
R _{θJA} | 0.5
4.0
250 | W
mW/°C
°C/W | | Forward Surge Current (Note 4) @ T _A = 25°C | I _{FSM} | 40 | Α | | Operating and Storage Temperature Range | T _J , T _{stg} | −65 to +150 | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. - 1. 10 X 1000 μs, non-repetitive. - 2. 1" square copper pad, FR-4 board. - 3. FR-4 board, using Littelfuse minimum recommended footprint, as shown in 403AA case outline dimensions spec. - 4. 1/2 sine wave (or equivalent square wave), PW = 8.3 ms, duty cycle = 4 pulses per minute maximum. #### **ELECTRICAL CHARACTERISTICS** $(T_A = 25^{\circ}C \text{ unless otherwise noted})$ | Symbol | Parameter | | | | | |-----------------|--|--|--|--|--| | I _{PP} | Maximum Reverse Peak Pulse Current | | | | | | V _C | Clamping Voltage @ I _{PP} | | | | | | V_{RWM} | Working Peak Reverse Voltage | | | | | | I _R | Maximum Reverse Leakage Current @ V _{RWM} | | | | | | V_{BR} | Breakdown Voltage @ I _T | | | | | | I _T | Test Current | | | | | | I _F | Forward Current | | | | | | V _F | Forward Voltage @ I _F | | | | | #### **ELECTRICAL CHARACTERISTICS** | | | V _{RWM} I _R (| | I _R @ Breakdown Voltage | | | V _C @ I _{PP}
(Note 7) | | С Тур. | V_F @ I_F (Note 9) | | |-------------|---------|-----------------------------------|------------|------------------------------------|-----|--------|--|----------------|-----------------|---|-----| | | Device | (Note 5) | | | | ote 6) | @ I _T | V _C | I _{PP} | (Note 8) | Max | | Device | Marking | Volts | μ Α | Min | Nom | Max | mA | Volts | Amps | pF | ٧ | | NSA5.0AFT3G | QA | 5.0 | 400 | 6.4 | 6.7 | 7.0 | 10 | 9.2 | 43.5 | 2450 | 3.5 | ^{5.} A transient suppressor is normally selected according to the working peak reverse voltage (V_{RWM}), which should be equal to or greater than the DC or continuous peak operating voltage level. 6. V_{BR} measured at pulse test current I_T at an ambient temperature of 25°C. - 7. Surge current waveform per Figure 2 and derate per Figure 3. - 8. Bias voltage = 0 V, F = 1.0 MHz, $T_J = 25$ °C. - 9. 1/2 sine wave or equivalent, PW = 8.3 ms, non-repetitive, I_F = 30 A. #### RATING AND TYPICAL CHARACTERISTIC CURVES 120 $T_A = 25^{\circ}C$ \leq 10 μ s PW (ID) IS DEFINED AS THE ppm, PEAK PULSE CURRENT (%) 100 POINT WHERE THE PEAK CURRENT DECAYS TO 50% OF Ipp. PEAK VALUE -80 Ippm 60 HALF VALUE - Ipp/2 40 10/1000 μs WAVEFORM AS DEFINED BY R.E.A. 20 0 l 2 3 0 t, TIME (ms) Figure 1. Pulse Rating Curve Figure 2. Pulse Waveform Figure 3. Pulse Derating Curve Figure 4. Typical Junction Capacitance vs. Bias Voltage Figure 5. Steady State Power Derating #### PACKAGE DIMENSIONS #### SMA-FL CASE 403AA-01 **ISSUE O** - NOTES: 1. DIMENSIONING AND TOLERANCING PER - ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. | OOM TO DESIGN | | | | | | | | |---------------|-------------|------|--|--|--|--|--| | | MILLIMETERS | | | | | | | | DIM | MIN | MAX | | | | | | | Α | 0.90 | 1.10 | | | | | | | b | 1.25 | 1.65 | | | | | | | С | 0.15 | 0.30 | | | | | | | D | 2.40 | 2.80 | | | | | | | E | 4.80 | 5.40 | | | | | | | E1 | 4.00 | 4.60 | | | | | | | | 0.70 | 1 10 | | | | | | #### **RECOMMENDED SOLDER FOOTPRINT** Littelfuse products are not designed for, and shall not be used for, any purpose (including, without limitation, automotive, military, aerospace, medical, life-saving, life-sustaining or nuclear facility applications, devices intended for surgical implant into the body, or any other application in which the failure or lack of desired operation of the product may result in personal injury, death, or property damage) other than those expressly set forth in applicable Littelfuse product documentation. Warranties granted by Littelfuse shall be deemed void for products used for any purpose not expressly set forth in applicable Littelfuse documentation. Littelfuse shall not be liable for any claims or damages arising out of products used in applications not expressly intended by Littelfuse as set forth in applicable Littelfuse documentation. The sale and use of Littelfuse products is subject to Littelfuse Terms and Conditions of Sale, unless otherwise agreed by Littelfuse. #### Littelfuse.com