

12-OUTPUT DIFFERENTIAL Z-BUFFER FOR PCIE GEN3 AND QPI

9ZX21200

Description

The 9ZX21200 is a small-footprint 12-output differential buffer that meets all the performance requirements of the Intel DB1200Z specification. The 9ZX21200 is backwards compatible to PCIe Gen1 and Gen2 applications. A fixed, internal feedback path maintains low drift for critical QPI applications. In bypass mode, the 9ZX21200 can provide outputs up to 150MHz.

Recommended Application

12-output PCIe Gen3/ QPI differential buffer for Romley and newer platforms

Key Specifications

- Cycle-to-cycle jitter <50ps
- Output-to-output skew < 65 ps
- Input-to-output delay variation <50ps
- PCIe Gen3 phase jitter < 1.0ps RMS
- QPI 9.6GT/s 12UI phase jitter < 0.2ps RMS

Features/Benefits

- Space-saving 56-pin package
- Fixed feedback path for 0ps input-to-output delay
- 9 Selectable SMBus Addresses; Mulitple devices can share the same SMBus Segment
- 4 OE# pins; Hardware control of four outputs
- PLL or bypass mode; PLL can dejitter incoming clock
- 100MHz or 133MHz PLL mode operation; supports PCle and QPI applications
- Selectable PLL bandwidth; minimizes jitter peaking in downstream PLL's
- Spread Spectrum Compatible; tracks spreading input clock for low EMI
- Software control of PLL Bandwidth and Bypass Settings/PLL can dejitter incoming clock (B Rev only)

Output Features

• 12 - 0.7V differential HCSL output pairs

Block Diagram

Pin Configuration

Notes: Pins with ^ prefix have internal 120K pullup
Pins with v prefix have internal 120K pulldown.
Even though the feedback path is fixed, the DFB_OUT
pair still needs a termination network for the part to
function.

Power Management Table

CKPWRGD_PD#	DIF_IN/ DIF_IN#	SMBus EN bit	DIF(11:0)/ DIF(11:0)#	PLL STATE IF NOT IN BYPASS MODE
0	Х	Х	Low/Low	OFF
1	Running	0	Low/Low	ON
'	nullilling	1	Runnina	ON

MLF Power Connections

	Pin Number	r	
VDD	VDD	GND	Description
56		1	Analog PLL
7		6	Analog Input
21,35,50	22,28,43,49	20,29,36,42, 51	DIF clocks

Functionality at Power-up (PLL mode)

100M_133M#	DIF_IN MHz	DIF(11:0)		
1	100.00	DIF_IN		
0	133.33	DIF_IN		

PLL Operating Mode Readback Table

HiBW_BypM_LoBW#	Byte0, bit 7	Byte 0, bit 6
Low (Low BW)	0	0
Mid (Bypass)	0	1
High (High BW)	1	1

PLL Operating Mode Table

HiBW_BypM_LoBW#	MODE
Low	PLL Lo BW
Mid	Bypass
High	PLL Hi BW

NOTE: PLL is OFF in Bypass Mode

Tri-Level Input Thresholds

Level	Voltage
Low	<0.8V
Mid	1.2 <vin<1.8v< td=""></vin<1.8v<>
High	Vin > 2.2V

9ZX21200 SMBus Addressing

Pi	n	
SMB_A1_tri	SMB_A0_tri	SMBus Address
0	0	D8
0	М	DA
0	1	DE
M	0	C2
M	М	C4
М	1	C6
1	0	CA
1	М	CC
1	1	CE

Pin Descriptions

DIN #	DINI NA ME		DECORDETON
PIN #		TYPE	DESCRIPTION
1	GNDA	PWR	Ground pin for the PLL core.
	ID EE	OUT	This pin establishes the reference for the differential current-mode output pairs. It requires a fixed precision
2	IREF	OUT	resistor to ground. 4750hm is the standard value for 1000hm differential impedance. Other impedances
			require different values. See data sheet.
3	100M_133M#	IN	3.3V Input to select operating frequency
	- · · - · · ·		See Functionality Table for Definition
4	HIBW_BYPM_LOBW#	IN	Trilevel input to select High BW, Bypass or Low BW mode.
			See PLL Operating Mode Table for Details.
5	CKPWRGD_PD#	IN	Notifies device to sample latched inputs and start up on first high assertion, or exit Power Down Mode on
			subsequent assertions. Low enters Power Down Mode.
6	GND	PWR	Ground pin.
7	VDDR	PWR	3.3V power for differential input clock (receiver). This VDD should be treated as an analog power rail and
			filtered appropriately.
8	DIF_IN	IN	0.7 V Differential TRUE input
9	DIF_IN#	IN	0.7 V Differential Complementary Input
10	SMB_A0_tri	IN	SMBus address bit. This is a tri-level input that works in conjunction with the SMB_A1 to decode 1 of 9
			SMBus Addresses.
11	SMBDAT	I/O	Data pin of SMBUS circuitry, 5V tolerant
12	SMBCLK	IN	Clock pin of SMBUS circuitry, 5V tolerant
13	SMB_A1_tri	IN	SMBus address bit. This is a tri-level input that works in conjunction with the SMB_A0 to decode 1 of 9
13	SIVID_AT_III	IIN	SMBus Addresses.
1.1	DED OUT#	OUT	Complementary half of differential feedback output, provides feedback signal to the PLL for synchronization
14	DFB_OUT#	OUT	with input clock to eliminate phase error.
15	DER OUT	OUT	True half of differential feedback output, provides feedback signal to the PLL for synchronization with the input
15	DFB_OUT	001	clock to eliminate phase error.
16	DIF_0	OUT	0.7V differential true clock output
17	DIF_0#	OUT	0.7V differential Complementary clock output
	DIF_1	OUT	0.7V differential true clock output
	 DIF_1#		0.7V differential Complementary clock output
	GND	PWR	Ground pin.
21	VDD		Power supply, nominal 3.3V
22	VDD		Power supply, nominal 3.3V
	DIF_2		0.7V differential true clock output
	DIF_2#		0.7V differential Complementary clock output
24	DIF_Z#	001	Active low input for enabling DIF pair 2.
25	vOE2#	IN	
	DIE 0	OUT	1 = disable outputs, 0 = enable outputs
	DIF_3		0.7V differential true clock output
	DIF_3#		0.7V differential Complementary clock output
28	VDD		Power supply, nominal 3.3V
29	GND		Ground pin.
	DIF_4		0.7V differential true clock output
31	DIF_4#	OUT	0.7V differential Complementary clock output
32	vOE4#	IN	Active low input for enabling DIF pair 4
			1 =disable outputs, 0 = enable outputs
	DIF_5		0.7V differential true clock output
	DIF_5#		0.7V differential Complementary clock output
35	VDD		Power supply, nominal 3.3V
36	GND		Ground pin.
	DIF_6		0.7V differential true clock output
38	DIF_6#	OUT	0.7V differential Complementary clock output
39	vOE6#	IN	Active low input for enabling DIF pair 6.
			1 =disable outputs, 0 = enable outputs
	DIF_7		0.7V differential true clock output
41	DIF_7#	OUT	0.7V differential Complementary clock output
42	GND	PWR	Ground pin.
43	VDD	PWR	Power supply, nominal 3.3V
44	DIF_8	OUT	0.7V differential true clock output
45	DIF_8#		0.7V differential Complementary clock output
			Active low input for enabling DIF pair 8.
46	vOE8#	IN	1 =disable outputs, 0 = enable outputs
47	DIF_9	OUT	0.7V differential true clock output
	DIF_9#		0.7V differential Complementary clock output
	VDD		Power supply, nominal 3.3V
50	VDD		Power supply, nominal 3.3V
	GND		Ground pin.
	DIF_10		0.7V differential true clock output
	DIF_10#		0.7V differential true clock output 0.7V differential Complementary clock output
			' '
	DIF_11		0.7V differential true clock output
55	DIF_11#		0.7V differential Complementary clock output
56	VDDA	PWR	3.3V power for the PLL core.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the 9ZX21200. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
3.3V Core Supply Voltage	VDD, VDDA	VDD for core logic and PLL			4.6	V	1,2
IO Supply Voltage	VDD	VDD for differential IO			4.6	V	1,2
Input Low Voltage	V _{IL}		GND-0.5			V	1
Input High Voltage	V_{IH}	Except for SMBus interface			$V_{DD}+0.5V$	V	1
Input High Voltage	V _{IHSMB}	SMBus clock and data pins			5.5V	V	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	°C	1
Input ESD protection	ESD prot	Human Body Model	2000			V	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Clock Input Parameters

 $T_A = T_{COM}$; Supply Voltage $V_{DD} = 3.3 \text{ V +/-5}\%$

A 00M7 - 1 1 7 - 1 3 - D1								
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES	
Input High Voltage - DIF IN	V _{IHDIF}	Differential inputs	600	800	1150	mV	1	
input riigir voltage - Dir _iiv	▼ IHDIF	(single-ended measurement)	000	800			'	
Input Low Voltage - DIF_IN	V_{ILDIF}	Differential inputs	V _{SS} - 300	0	300	mV	4	
	VILDIF	(single-ended measurement)	Vss - 300				<u> </u>	
Input Common Mode Voltage	Vasu	Common Mode Input Voltage	300		1000	mV	1	
- DIF_IN	V _{сом}	V COM	Common Mode Input Voltage	300		1000	111 V	
Input Amplitude - DIF_IN	V_{SWING}	Peak to Peak value	300		1450	mV	1	
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.4		8	V/ns	1,2	
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}$, $V_{IN} = GND$	-5		5	uA	1	
Input Duty Cycle	d_{tin}	Measurement from differential wavefrom	45	•	55	%	1	
Input Jitter - Cycle to Cycle	J_{DIFIn}	Differential Measurement	0		125	ps	1	

¹ Guaranteed by design and characterization, not 100% tested in production.

9ZX21200

²Operation under these conditions is neither implied nor guaranteed.

²Slew rate measured through +/-75mV window centered around differential zero

Electrical Characteristics-Input/Supply/Common Output Parameters

 $T_A = T_{COM}$; Supply Voltage $V_{DD} = 3.3 \text{ V +/-5}\%$

_{DD} = 3.3 V +		ı				
SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
T _{COM}	Commmercial range	0		70	°C	1
OOIVI	ű	-				
V_{IH}	Single-ended inputs, except SMBus, low threshold and tri-level inputs	2		V _{DD} + 0.3	V	1
V_{IL}	Single-ended inputs, except SMBus, low threshold and tri-level inputs	GND - 0.3		0.8	V	1
I _{IN}	Single-ended inputs, $V_{IN} = GND$, $V_{IN} = VDD$	-5		5	uA	1
I _{INP}	$\label{eq:VIN} Single-ended inputs \\ V_{IN} = 0 \text{ V}; \text{ Inputs with internal pull-up resistors} \\ V_{IN} = \text{VDD}; \text{ Inputs with internal pull-down resistors}$	-200		200	uA	1
F_{ibyp}	V _{DD} = 3.3 V, Bypass mode	33		150	MHz	2
F_{ipII}	$V_{DD} = 3.3 \text{ V}, 100\text{MHz PLL mode}$	90	100.00	110	MHz	2
F_{ipll}	$V_{DD} = 3.3 \text{ V}, 133.33 \text{MHz PLL mode}$	120	133.33	147	MHz	2
L_{pin}				7	nΗ	1
C_{IN}	Logic Inputs, except DIF_IN	1.5		5	рF	1
C _{INDIF_IN}	DIF_IN differential clock inputs	1.5		2.7	рF	1,4
C _{OUT}	Output pin capacitance			6	pF	1
T _{STAB}	From V _{DD} Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock		0.300	1	ms	1,2
f _{MODIN}	Allowable Frequency (Triangular Modulation)	30		33	kHz	1
t _{LATOE} #	DIF start after OE# assertion DIF stop after OE# deassertion	4		12	clocks	1,3
t _{DRVPD}	DIF output enable after PD# de-assertion		16	300	us	1,3
t _F	Fall time of control inputs			10	ns	1,2
t _R	Rise time of control inputs			10	ns	1,2
V_{ILSMB}				0.8	V	1
		2.1		$V_{\rm DDSMB}$	V	1
V_{OLSMB}	@ I _{PULLUP}			0.4	V	1
I _{PULLUP}	@ V _{OL}	4			mA	1
V_{DDSMB}	3V to 5V +/- 10%	2.7		5.5	V	1
t _{RSMB}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
t _{FSMB}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
f _{MAXSMB}	Maximum SMBus operating frequency			100	kHz	1,5
	SYMBOL TCOM VIH VIL IIN IINP FipII Lpin CIN COUT TSTAB fMODIN tLATOE# tpRVPD tr tr VILSMB VOLSMB IPULLUP VDDSMB trSMB trSMB trSMB fMAXSMB	TCOM Commmercial range VIH Single-ended inputs, except SMBus, low threshold and tri-level inputs VIL Single-ended inputs, except SMBus, low threshold and tri-level inputs Single-ended inputs, except SMBus, low threshold and tri-level inputs IIN Single-ended inputs, VIN = GND, VIN = VDD Single-ended inputs, VIN = GND, VIN = VDD Single-ended inputs VIN = V VIN = V VIN = VI	SYMBOL CONDITIONS MIN TCOM Commmercial range 0 VIH Single-ended inputs, except SMBus, low threshold and tri-level inputs 2 VIL Single-ended inputs, except SMBus, low threshold and tri-level inputs GND - 0.3 IIN Single-ended inputs, V _{IN} = GND, V _{IN} = VDD -5 Filin VIN = 0 V; Inputs with internal pull-up resistors VIN = VDD; Inputs with internal pull-down resistors -200 Fibyp VDD = 3.3 V, 100MHz PLL mode 90 FipII VDD = 3.3 V, 100MHz PLL mode 120 Lpin Logic Inputs, except DIF_IN 1.5 CIN Logic Inputs, except DIF_IN 1.5 CINDIF_IN DIF_IN differential clock inputs 1.5 COUT Output pin capacitance 1.5 TSTAB From VDD Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock 4 fMODIN Allowable Frequency (Triangular Modulation) 30 tLATOE# DIF start after OE# deassertion 4 tDIF stop after OE# deassertion 4 tR Fall time of control inputs	SYMBOL CONDITIONS MIN TYP T _{COM} Commmercial range 0 0 V _{IH} Single-ended inputs, except SMBus, low threshold and tri-level inputs 2	SYMBOL CONDITIONS	SYMBOL CONDITIONS MIN TYP MAX UNITS TCOM Commmercial range 0 70 °C V _{IH} Single-ended inputs, except SMBus, low threshold and tri-level inputs 2 V _{DD} + 0.3 V V _{IL} Single-ended inputs, except SMBus, low threshold and tri-level inputs GND - 0.3 0.8 V I _{IN} Single-ended inputs, V _{IN} = GND, V _{IN} = VDD -5 5 uA I _{INP} V _{IN} = 0 V; inputs with internal pull-up resistors V _{IN} = VDD; Inputs with internal pull-down resistors -200 uA F _{IDM} V _{DD} = 3.3 V, 100MHz PLL mode 33 150 MHz F _{IDM} V _{DD} = 3.3 V, 100MHz PLL mode 90 100.00 110 MHz F _{IDM} V _{DD} = 3.3 V, 133.33MHz PLL mode 120 133.33 147 MHz L _{pin} V _{DD} = 3.3 V, 130.4 stable respectors 1.5 5 pF C _{INDIF IN} DIF_IN differential clock inputs 1.5 5 pF C _{INDIF IN} DIF_IN differential clock inputs 1.5 2.7 pF

¹Guaranteed by design and characterization, not 100% tested in production.

²Control input must be monotonic from 20% to 80% of input swing.

 $^{^3}$ Time from deassertion until outputs are >200 mV

⁴DIF_IN input

 $^{^5\}mbox{The differential input clock must be running for the SMBus to be active$

Electrical Characteristics-DIF 0.7V Current Mode Differential Outputs

 $T_A = T_{COM}$; Supply Voltage VDD = 3.3 V +/-5%

71 00.11, 11,							
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	Trf	Scope averaging on	1	2	4	V/ns	1, 2, 3
Slew rate matching	ΔTrf	Slew rate matching, Scope averaging on		8	20	%	1, 2, 4
Voltage High	VHigh	Statistical measurement on single-ended signal using oscilloscope math function. (Scope	660	705	850	mV	1
Voltage Low	VLow	averaging on)		1	150] '''V	1
Max Voltage	Vmax	Measurement on single ended signal using		725	1150	mV	1
Min Voltage	Vmin	absolute value. (Scope averaging off)	-300	-22		IIIV	1
Vswing	Vswing	Scope averaging off	300	1407		mV	1, 2
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	309	550	mV	1, 5
Crossing Voltage (var)	Δ-Vcross	Scope averaging off		22	140	mV	1, 6

¹Guaranteed by design and characterization, not 100% tested in production. IREF = VDD/(3xR_R). For R_R = 412 Ω (1%), I_{REF} = 2.7mA. I_{OH} = 6.4 x I_{REF} and V_{OH} = 0.7V @ Z_O=85 Ω differential impedance.

Electrical Characteristics-Current Consumption

 $T_A = T_{COM}$: Supply Voltage VDD = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Operating Current	I _{DDVDD}	133MHz, C_L = Full load; VDD rail, $Zo=85\Omega$		260	275	mA	1
Operating Current	I _{DDVDDA}	133MHz, C_L = Full load; VDD rail, Z_0 =85 Ω		13	20	mA	1
Powerdown Current	I _{DDVDDPD}	Power Down, VDD rail, Zo= 85Ω		2	6	mA	1
Fowerdown Current	I _{DDVDDAPD}	Power Down, VDD rail, Zo=85Ω		1.3	2	mA	1

¹Guaranteed by design and characterization, not 100% tested in production.

² Measured from differential waveform

³ Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

⁴ Matching applies to rising edge rate of Clock / falling edge rate of Clock#. It is measured in a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope uses for the edge rate calculations.

⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of V_cross_min/max (V_cross absolute) allowed. The intent is to limit Vcross induced modulation by setting V_cross_delta to be smaller than V_cross absolute.

Electrical Characteristics-Skew and Differential Jitter Parameters

 $T_A = T_{COM}$ Supply Voltage VDD = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
CLK_IN, DIF[x:0]	t _{SPO_PLL}	Input-to-Output Skew in PLL mode nominal value @ 25°C, 3.3V	-100	29	100	ps	1,2,4,5,8
CLK_IN, DIF[x:0]	t _{PD_BYP}	Input-to-Output Skew in Bypass mode nominal value @ 25°C, 3.3V	2.5	3.7	4.5	ns	1,2,3,5,8
CLK_IN, DIF[x:0]	t _{DSPO_PLL}	Input-to-Output Skew Varation in PLL mode across voltage and temperature	-50		50	ps	1,2,3,5,8
CLK_IN, DIF[x:0]	t _{DSPO_BYP}	Input-to-Output Skew Varation in Bypass mode across voltage and temperature	-250		250	ps	1,2,3,5,8
CLK_IN, DIF[x:0]	t _{DTE}	Random Differential Tracking error beween two 9ZX devices in Hi BW Mode		2.9	5	ps (rms)	1,2,3,5,8
CLK_IN, DIF[x:0]	t _{DSSTE}	Random Differential Spread Spectrum Tracking error beween two 9ZX devices in Hi BW Mode		14	75	ps	1,2,3,5,8
DIF{x:0]	t _{SKEW_ALL}	Output-to-Output Skew across all outputs (Common to Bypass and PLL mode)		32	65	ps	1,2,3,8
PLL Jitter Peaking	j _{peak-hibw}	LOBW#_BYPASS_HIBW = 1	0	1.8	2.5	dB	7,8
PLL Jitter Peaking	j _{peak-lobw}	LOBW#_BYPASS_HIBW = 0	0	0.7	2	dB	7,8
PLL Bandwidth	pll _{HIBW}	LOBW#_BYPASS_HIBW = 1	2	3.1	4	MHz	8,9
PLL Bandwidth	pll _{LOBW}	LOBW#_BYPASS_HIBW = 0	0.7	1.1	1.4	MHz	8,9
Duty Cycle	t _{DC}	Measured differentially, PLL Mode	45	49.6	55	%	1
Duty Cycle Distortion	t _{DCD}	Measured differentially, Bypass Mode @100MHz	-2	-0.2	2	%	1,10
Jitter, Cycle to cycle	t	PLL mode		15.7	50	ps	1,11
Cition, Cyolo to Cycle	t _{jcyc-cyc}	Additive Jitter in Bypass Mode		0.1	50	ps	1,11

Notes for preceding table:

¹ Measured into fixed 2 pF load cap. Input to output skew is measured at the first output edge following the corresponding input.

² Measured from differential cross-point to differential cross-point. This parameter can be tuned with external feedback path, if present.

³ All Bypass Mode Input-to-Output specs refer to the timing between an input edge and the specific output edge created by it.

⁴ This parameter is deterministic for a given device

⁵ Measured with scope averaging on to find mean value.

^{6.} t is the period of the input clock

⁷ Measured as maximum pass band gain. At frequencies within the loop BW, highest point of magnification is called PLL jitter peaking.

^{8.} Guaranteed by design and characterization, not 100% tested in production.

⁹ Measured at 3 db down or half power point.

¹⁰ Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode.

¹¹ Measured from differential waveform

Electrical Characteristics-Phase Jitter Parameters

 $T_A = T_{COM}$; Supply Voltage VDD = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
	t _{iphPCleG1}	PCIe Gen 1		32	86	ps (p-p)	1,2,3
	t	PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz		0.8	3	ps (rms)	1,2
	t _{jphPCleG2}	PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)		1.9	3.1	ps (rms)	1,2
Phase Jitter, PLL Mode	t _{jphPCleG3}	PCIe Gen 3 (PLL BW of 2-4MHz, CDR = 10MHz)		0.45	1	ps (rms)	1,2,4
		QPI & SMI (100MHz or 133MHz, 4.8Gb/s, 6.4Gb/s 12UI)		0.20	0.5	ps (rms)	1,5
	t _{jphQPI_} SMI	QPI & SMI (100MHz, 8.0Gb/s, 12UI)		0.14	0.3	ps (rms)	1,5
		QPI & SMI (100MHz, 9.6Gb/s, 12UI)		0.12	0.2	ps (rms)	1,5
	t _{iphPCleG1}	PCIe Gen 1		0.10	10	ps (p-p)	1,2,3
		PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz		0.13	0.1	ps (rms)	1,2,6
	t _{jphPCleG2}	PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)		0.10	0.5	ps (rms)	1,2,6
Additive Phase Jitter, Bypass mode	t _{jphPCleG3}	PCIe Gen 3 (PLL BW of 2-4MHz, CDR = 10MHz)		0.10	0.2	ps (rms)	1,2,4,6
Буразз точе		QPI & SMI (100MHz or 133MHz, 4.8Gb/s, 6.4Gb/s 12UI)		0.09	0.1	ps (rms)	1,5,6
	t _{jphQPI_SMI}	QPI & SMI (100MHz, 8.0Gb/s, 12UI)		0.09	0.1	ps (rms)	1,5,6
		QPI & SMI (100MHz, 9.6Gb/s, 12UI)		0.09	0.1	ps (rms)	1,5,6

¹ Applies to all outputs.

Differential Output Terminations

DIF Zo (Ω)	Iref (Ω)	Rs (Ω)	Rp (Ω)
100	475	33	50
85	412	27	42.2 or 43.2

9ZX21200 Differential Test Loads

9ZX21200

² See http://www.pcisig.com for complete specs

³ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.

⁴ Subject to final radification by PCI SIG.

⁵ Calculated from Intel-supplied Clock Jitter Tool v 1.6.4

⁶ For RMS figures, additive jitter is calculated by solving the following equation: (Additive jitter)^2 = (total jitter)^2 - (input jitter)^2

Clock Periods-Differential Outputs with Spread Spectrum Disabled

			Measurement Window							
	Center	1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
SSC OFF	Freq. MHz	-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max	Units	Notes
DIF	100.00	9.94900		9.99900	10.00000	10.00100		10.05100	ns	1,2,3
ווט	133.33	7.44925		7.49925	7.50000	7.50075		7.55075	ns	1,2,4

Clock Periods-Differential Outputs with Spread Spectrum Enabled

	Center Freq. MHz		Measurement Window							
SSC ON		1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
		-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max	Units	Notes
DIF	99.75	9.94906	9.99906	10.02406	10.02506	10.02607	10.05107	10.10107	ns	1,2,3
DIF	133.00	7.44930	7.49930	7.51805	7.51880	7.51955	7.53830	7.58830	ns	1,2,4

Notes:

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy specifications are guaranteed with the assumption that the input clock complies with CK420BQ/CK410B+ accuracy requirements (+/-100ppm). The 9ZX21200 itself does not contribute to ppm error.

³ Driven by SRC output of main clock, 100 MHz PLL Mode or Bypass mode

 $^{^{}m 4}\,$ Driven by CPU output of main clock, 133 MHz PLL Mode or Bypass mode

General SMBus Serial Interface Information for 9ZX21200

How to Write

- · Controller (host) sends a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) sends the byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

	Index Bl	ock '	Write Operation
Control	er (Host)		IDT (Slave/Receiver)
Т	starT bit		
Slave	Address		
WR	WRite		
			ACK
Beginning	g Byte = N		
			ACK
Data Byte	Count = X		
			ACK
Beginnir	ng Byte N		
			ACK
0		×	
0		X Byte	0
0		Ф	0
			0
Byte N	+ X - 1		
			ACK
Р	stoP bit		

How to Read

- · Controller (host) will send a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) will send a separate start bit
- · Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count = X
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte X (if X_(H) was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

	Index Block F	Read O	peration
Cor	ntroller (Host)		IDT (Slave/Receiver)
Т	starT bit		
SI	ave Address		
WR	WRite		
			ACK
Begi	nning Byte = N		
			ACK
RT	Repeat starT		
SI	ave Address		
RD	RD ReaD		
			ACK
			Data Byte Count=X
	ACK		
			Beginning Byte N
	ACK		
		<u>e</u>	0
	0	X Byte	0
	0		0
	0		
			Byte N + X - 1
N	N Not acknowledge		
Р	stoP bit		

SMBusTable: PLL Mode, and Frequency Select Register

Byte	e 0 Pin#	Name	Control Function	Type	0	1	Default	
Bit 7	3	PLL Mode 1	PLL Operating Mode Rd back 1	R	See PLL Op	erating Mode	Latch	
Bit 6	3	PLL Mode 0	PLL Operating Mode Rd back 0	R	Readba	Latch		
Bit 5			Reserved				0	
Bit 4			Reserved					
Bit 3	These bits	PLL_SW_EN	Enable S/W control of PLL BW	RW	HW Latch	S/W Control	0	
Bit 2	available in B	PLL Mode 1	PLL Operating Mode 1	RW	See PLL Op	erating Mode	1	
Bit 1	rev only.	PLL Mode 0	PLL Mode 0 PLL Operating Mode 1			Readback Table		
Bit 0	2	100M 133M#	Frequency Select Readback	R	133MHz	100MHz	Latch	

SMBusTable: Output Control Register

Byte	1 Pin#	Name	Control Function	Type	0	1	Default
Bit 7	42/41	DIF_7_En	Output Control overrides OE# pin	RW			1
Bit 6	38/37	DIF_6_En	Output Control overrides OE# pin	RW			1
Bit 5	34/35	DIF_5_En	Output Control overrides OE# pin	RW			1
Bit 4	30/29	DIF_4_En	Output Control overrides OE# pin	RW	Low/Low	Enable	1
Bit 3	25/26	DIF_3_En	Output Control	RW	LOW/LOW		1
Bit 2	23/24	DIF_2_En	Output Control	RW			1
Bit 1	18/19	DIF_1_En	Output Control	RW			1
Bit 0	16/17	DIF_0_En	Output Control	RW			1

SMBusTable: Output Control Register

Byte	2	Pin #	Name	Control Function	Type	0	1	Default			
Bit 7				Reserved							
Bit 6				Reserved							
Bit 5				Reserved							
Bit 4				Reserved							
Bit 3	5	5/54	DIF_11_En	Output Control	RW			1			
Bit 2	5	3/52	DIF_10_En	Output Control	RW	Low/Low	Enoble	1			
Bit 1	4	8/47	DIF_9_En	Output Control RW Low/Low Enable							
Bit 0	4	6/45	DIF_8_En	Output Control	RW			1			

SMBusTable: Reserved Register

Byte	3	Pin #	Name	Control Function	Type	0	1	Default		
Bit 7				Reserved				0		
Bit 6				Reserved						
Bit 5				Reserved						
Bit 4			Reserved							
Bit 3				Reserved				0		
Bit 2				Reserved						
Bit 1			Reserved							
Bit 0				Reserved						

SMBusTable: Reserved Register

Byte	e 4	Pin #	n # Name Control Function		Type	0	1	Default	
Bit 7	it 7 Reserved					0			
Bit 6			Reserved						
Bit 5			Reserved						
Bit 4			Reserved					0	
Bit 3				Reserved				0	
Bit 2			Reserved					0	
Bit 1			Reserved					0	
Bit 0			Reserved						

11

SMBusTable: Vendor & Revision ID Register

Byte	5 Pin#	Name	Control Function	Туре	0	1	Default
Bit 7	-	RID3		R			Х
Bit 6	-	RID2	REVISION ID	R	A rev = 0000		Х
Bit 5	-	RID1	REVISION ID	R	B rev = 0001		X
Bit 4	-	RID0		R			Х
Bit 3	-	VID3		R			0
Bit 2	-	VID2	VENDOR ID	R	0001 for	IDT/ICS	0
Bit 1	-	VID1	VENDOR ID	R	0001101	101/103	0
Bit 0	-	VID0		R			1

SMBusTable: DEVICE ID

Byte	6 Pin #	Name	Control Function	Type	0	1	Default
Bit 7	-	De	evice ID 7 (MSB)	R			1
Bit 6	-		Device ID 6	R			1
Bit 5	-		Device ID 5	R			0
Bit 4	-		Device ID 4	R	1000 io 000 do	cimal or C8 hex	0
Bit 3	-		Device ID 3	R	1200 IS 200 de	cimal of Co flex	1
Bit 2	-		Device ID 2	R			0
Bit 1	-		Device ID 1	R			0
Bit 0	-		Device ID 0	R			0

SMBusTable: Byte Count Register

Byte 7 Pin # Name		Name	Control Function	Type	0	1	Default	
Bit 7		Reserved				0		
Bit 6		Reserved						
Bit 5			Reserved					
Bit 4	-	BC4		RW			0	
Bit 3	-	BC3	Writing to this register configures how	RW	Default value	is 8 hex, so 9	1	
Bit 2	-	BC2	many bytes will be read back.	RW	bytes (0 to 8) w	ill be read back	0	
Bit 1	-	BC1	many bytes will be read back.	RW	by de	efault.	0	
Bit 0	-	BC0]	RW]		0	

SMBusTable: Reserved Register

Byte	yte 8 Pin # Name Co		Control Function	Type	0	1	Default	
Bit 7	7 Reserved					0		
Bit 6	6 Reserved							0
Bit 5					0			
Bit 4			Reserved				0	
Bit 3			Reserved				0	
Bit 2			Reserved				0	
Bit 1			Reserved				0	
Bit 0			Reserved				0	

DIF Reference Clock								
Common Recommendations for Differential Routing	Dimension or Value	Unit	Figure					
L1 length, route as non-coupled 50ohm trace	0.5 max	inch	1					
L2 length, route as non-coupled 50ohm trace	0.2 max	inch	1					
L3 length, route as non-coupled 50ohm trace	0.2 max	inch	1					
Rs (100 ohm differential traces)	33	ohm	1					
Rs (85 ohm differential traces)	27	ohm	1					

Down Device Differential Routing			
L4 length, route as coupled microstrip 100ohm differential trace	2 min to 16 max	inch	1
L4 length, route as coupled stripline 100ohm differential trace	1.8 min to 14.4 max	inch	1

Differential Routing to PCI Express Connector			
L4 length, route as coupled microstrip 100ohm differential trace	0.25 to 14 max	inch	2
L4 length, route as coupled stripline 100ohm differential trace	0.225 min to 12.6 max	inch	2

	Alternative Termination for LVDS and other Common Differential Signals (figure 3)									
Vdiff	Vp-p	Vcm	R1	R2	R3	R4	Note			
0.45 v	0.22v	1.08	33	150	100	100				
0.58	0.28	0.6	33	78.7	137	100				
0.80	0.40	0.6	33	78.7	none	100	ICS874003i-02 input compatible			
0.60	0.3	1.2	33	174	140	100	Standard LVDS			

R1a = R1b = R1 R2a = R2b = R2

Cable Connected AC Coupled Application (figure 4)							
Component	Value	Note					
R5a, R5b	8.2K 5%						
R6a, R6b	1K 5%						
Cc	0.1 μF						
Vcm	0.350 volts						

Package Outline and Package Dimensions (56-pin VFQFPN)

Dimensions (mm)								
Symbol	Min	Max						
Α	A 0.8 1.0							
A1	0	0.05						
A3	0.25 Re	ference						
b	b 0.18 0.3							
е	e 0.50 BASIC							
D x E BASIC	8.00 >	8.00						
D2 MIN./MAX.	4.35	4.65						
E2 MIN./MAX.	5.05	5.35						
L MIN./MAX.	0.3	0.5						
N	56							
N _D 14								
N _E	1	4						

Ordering Information

Part / Order Number	Shipping Package	Package	Temperature	Difference
9ZX21200AKLF	Trays	56-pin VFQFPN	0 to +70°C	W/O Byte 0 PLL Control
9ZX21200AKLFT	Tape and Reel	56-pin VFQFPN	0 to +70°C	W/O Byte of LL Control
9ZX21200BKLF	Trays	56-pin VFQFPN	0 to +70°C	With Byte 0 PLL Mode
9ZX21200BKLFT	Tape and Reel	56-pin VFQFPN	0 to +70°C	Control

[&]quot;LF" suffix to the part number designates Pb-Free configuration, RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

[&]quot;A" and "B" are the device revision designators (will not correlate with the datasheet revision).

Revision History

Rev.	Issue Date	Issuer	Description	Page #
A	9/13/2011		Updated electrical tables with char data	Various
			2. Fixed minor typographical errors	
			3. Moved to final	
В	12/8/2011	RDW	Added B rev functionality description to Features, Benefits	1,7,11,15
			2. Updated tDSPO_BYP parameter from +/-350ps to +/-250ps	
			3.Updated SMBus Byte 0 with B rev functionality	
			4. Updated ordering information to include B rev	
С	4/18/2012	RDW	Updated Power Connections table to be consistent with 9ZXL1230	2,8
			2. Updated Rp values on Output Terminations Table from 43.2 ohms to	
			42.2 or 43.2 ohms to be consistent with Intel.	
D	4/15/2013	RDW	Corrected typo in OE# Latency parameter; changed 1 min. to 3 max.	5
			cycles to 4 min. to 12 max. clocks.	

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775 For Tech Support

www.idt.com/go/clockhelp pcclockhelp@idt.com

Corporate Headquarters

Integrated Device Technology, Inc. www.idt.com

