

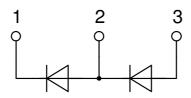
Standard Rectifier

= 2x 1200 V

50 A

V_F 1.28 V

Phase leg


Part number

DMA50P1200HR

Backside: isolated

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very low forward voltage drop • Improved thermal behaviour

Applications:

- Diode for main rectification
- For single and three phase bridge configurations

Package: ISO247

- Isolation Voltage: 3600 V~
- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Soldering pins for PCB mounting
- Backside: DCB ceramic
- Reduced weight
- Advanced power cycling

Terms _Conditions of usage:

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact the sales office, which is responsible for you.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.

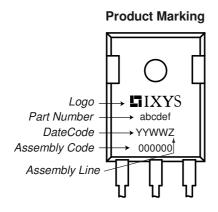
Should you intend to use the product in aviation, in health or live endangering or life support applications, please notify. For any such application we urgently recommend

- to perform joint risk and quality assessments;
 the conclusion of quality agreements;
- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

IXYS reserves the right to change limits, conditions and dimensions.

Data according to IEC 60747 and per semiconductor unless otherwise specified

20151214b



Rectifier					Ratings	S	
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse bloc	cking voltage	$T_{VJ} = 25^{\circ}C$			1300	V
V _{RRM}	max. repetitive reverse blocking	voltage	$T_{VJ} = 25^{\circ}C$			1200	V
I _R	reverse current	V _R = 1200 V	$T_{VJ} = 25^{\circ}C$			40	μΑ
		$V_R = 1200 \text{ V}$	$T_{VJ} = 150$ °C			1.5	mA
V _F	forward voltage drop	I _F = 50 A	$T_{VJ} = 25^{\circ}C$			1.31	V
		$I_{F} = 100 \text{ A}$				1.64	٧
		$I_F = 50 \text{ A}$	$T_{VJ} = 150$ °C			1.28	٧
		$I_F = 100 \text{ A}$				1.70	٧
I FAV	average forward current	T _C = 105°C	$T_{VJ} = 175$ °C			50	Α
		180° sine					
V _{F0}	threshold voltage		$T_{VJ} = 175$ °C			0.82	٧
r _F	slope resistance \(\) for power	loss calculation only				9	mΩ
R _{thJC}	thermal resistance junction to ca	ase				0.7	K/W
R _{thCH}	thermal resistance case to heat	sink			0.25		K/W
P _{tot}	total power dissipation		$T_{C} = 25^{\circ}C$			210	W
I _{FSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			500	Α
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			540	Α
		t = 10 ms; (50 Hz), sine	T _{VJ} = 150°C			425	Α
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			460	Α
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			1.25	kA2s
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			1.22	kA2s
		t = 10 ms; (50 Hz), sine	$T_{VJ} = 150$ °C			905	A ² s
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			880	A²s
CJ	junction capacitance	$V_{R} = 400 \text{ V}; f = 1 \text{ MHz}$	$T_{VJ} = 25^{\circ}C$		18		pF

Package	ISO247			F	Ratings	8	
Symbol	Definition	Conditions		min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal				70	Α
T _{vJ}	virtual junction temperature			-55		175	°C
Top	operation temperature		-55		150	°C	
T _{stg}	storage temperature		-55		150	°C	
Weight					6		g
M _D	mounting torque			8.0		1.2	Nm
F_c	mounting force with clip			20		120	Ν
d _{Spp/App}	creepage distance on surface striking	distance through air	terminal to terminal	2.7			mm
$d_{Spb/Apb}$	creepage distance on surface striking	distance through an	terminal to backside	4.1			mm
V _{ISOL}	isolation voltage	t = 1 second	50/00 II D140 I	3600			٧
		t = 1 minute	50/60 Hz, RMS; IISOL ≤ 1 mA	3000			٧

Part description

D = Diode

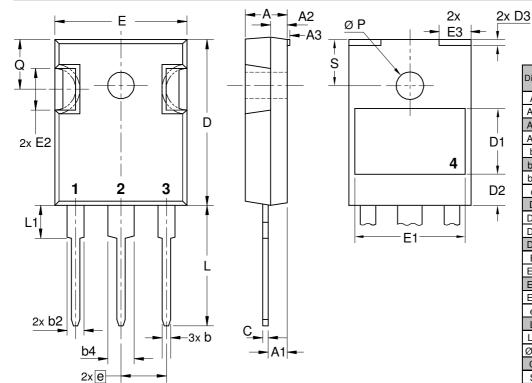
M = Standard Rectifier

A = (up to 1800V)

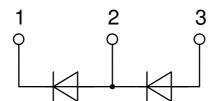
50 = Current Rating [A]

P = Phase leg

1200 = Reverse Voltage [V]


HR = ISO247(3)

(Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
5	Standard	DMA50P1200HR	DMA50P1200HR	Tube	30	512335


Equiva	alent Circuits for	Simulation	* on die level	$T_{VJ} = 175 ^{\circ}\text{C}$
$I \rightarrow V_0$)—[R_o]-	Rectifier		
V _{0 max}	threshold voltage	0.82		V
$R_{0 max}$	slope resistance *	6.4		$m\Omega$

Outlines ISO247

Dim.	Millimeter		Inches		
D	min	max	min	max	
Α	4.70	5.30	0.185	0.209	
A1	2.21	2.59	0.087	0.102	
A2	1.50	2.49	0.059	0.098	
А3	typ.	0.05	typ. 0.002		
b	0.99	1.40	0.039	0.055	
b2	1.65	2.39	0.065	0.094	
b4	2.59	3.43	0.102	0.135	
С	0.38	0.89	0.015	0.035	
D	20.79	21.45	0.819	0.844	
D1	typ.	8.90	typ. 0.350		
D2	typ.	2.90	typ. 0.114		
D3	typ.	1.00	typ. 0.039		
Е	15.49	16.24	0.610	0.639	
E1	typ.	13.45	typ.	0.530	
E2	4.31	5.48	0.170	0.216	
E3	typ.	4.00	typ. 0.157		
е	5.46	BSC	0.215 BSC		
П	19.80	20.30	0.780	0.799	
L1	-	4.49	-	0.177	
ØΡ	3.55	3.65	0.140	0.144	
Q	5.38	6.19	0.212	0.244	
S	6.14	BSC	0.242	BSC	

Rectifier

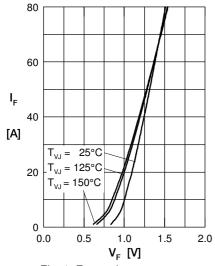


Fig. 1 Forward current versus voltage drop per diode

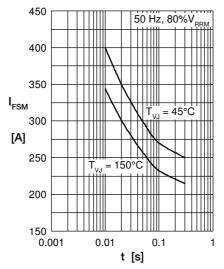


Fig. 2 Surge overload current versus time per diode

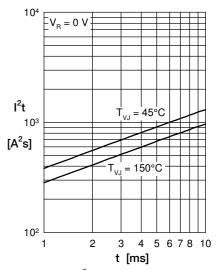


Fig. 3 I²t versus time per diode

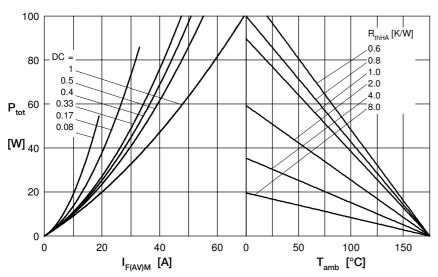


Fig. 4 Power dissipation versusdirect output current and ambient temperature per diode

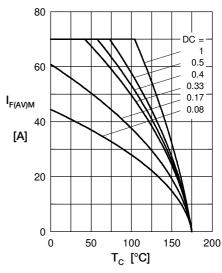


Fig. 5 Max. forward current vs. case temperature per diode

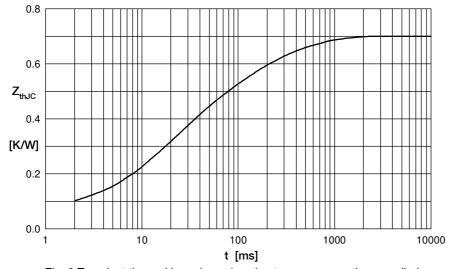


Fig. 6 Transient thermal impedance junction to case versus time per diode

Constants for Z_{thJC} calculation:

İ	R _{thi} (K/W)	t _i (s)
1	0.06	0.0004
2	0.12	0.0100
3	0.20	0.0240
4	0.20	0.1000
5	0.12	0.4500