

High voltage high and low-side driver

Datasheet - production data

Features

- High voltage rail up to 600 V
- dV/dt immunity ± 50 V/nsec in full temperature range
- Driver current capability:
 - 400 mA source
 - 650 mA sink
- Switching times 50/30 nsec rise/fall with 1 nF load
- CMOS/TTL Schmitt trigger inputs with hysteresis and pull-down
- Undervoltage lockout on lower and upper driving section
- Internal bootstrap diode
- Outputs in phase with inputs

Applications

- Home appliances
- Induction heating
- HVAC
- Motor drivers
 - SR motors
 - DC, AC, PMDC and PMAC motors
- Asymmetrical half-bridge topologies
- · Industrial applications and drives
- Lighting applications
- · Factory automation
- Power supply systems

Description

The L6385E is a simple and compact high voltage gate driver, manufactured with the BCD™ "offline" technology, and able to drive a half-bridge of power MOSFET or IGBT devices. The high-side (floating) section is able to work with voltage rail up to 600 V. Both device outputs can independently sink and source 650 mA and 400 mA respectively and can be simultaneously driven high.

The L6385E device provides two input pins and two output pins and guarantees the outputs toggle in phase with inputs. The logic inputs are CMOS/TTL compatible to ease the interfacing with controlling devices.

The bootstrap diode is integrated inside the device, allowing a more compact and reliable solution.

The L6385E features the UVLO protection on both lower and upper driving sections (V_{CC} and V_{boot}), ensuring greater protection against voltage drops on the supply lines.

The device is available in a DIP-8 tube and SO-8 tube, and tape and reel packaging options.

Table 1. Device summary

Part number	Package	Packaging
L6385E	DIP-8	Tube
L6385ED	SO-8	Tube
L6385ED013TR	SO-8	Tape and reel

Contents L6385E

Contents

1	Bloc	k diagram 3
2	Elec	trical data4
	2.1	Absolute maximum ratings
	2.2	Thermal data 4
	2.3	Recommended operating conditions 4
3	Pin o	connection
4	Elec	trical characteristics6
	4.1	AC operation 6
	4.2	DC operation 6
	4.3	Timing diagram
5	Boot	strap driver8
	C_{BOO}	_{oT} selection and charging
6	Турі	cal characteristic10
7	Pack	rage information
8	Revi	sion history14

L6385E Block diagram

1 Block diagram

BOOTSTRAP DRIVER 8 Vboot Cboot H.V. UV DETECTION UV DETECTION HVG DRIVER R HVG R S LEVEL SHIFTER HIN LOGIC OUT 6 5 LVG LIN LVG 4 GND DRIVER D97IN514B

Figure 1. Block diagram

Electrical data L6385E

2 Electrical data

2.1 Absolute maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{out}	Output voltage	-3 to V _{boot} -18	V
V _{cc}	Supply voltage	- 0.3 to +18	V
V _{boot}	Floating supply voltage	-1 to 618	V
V _{hvg}	High-side gate output voltage	-1 to V _{boot}	V
V _{Ivg}	Low-side gate output voltage	-0.3 to V _{cc} +0.3	V
V _i	Logic input voltage	-0.3 to V _{cc} +0.3	V
dV _{out} /d _t	Allowed output slew rate	50	V/ns
P _{tot}	Total power dissipation (T _J = 85 °C)	750	mW
T _j	Junction temperature	150	°C
T _s	Storage temperature	-50 to 150	°C

2.2 Thermal data

Table 3. Thermal data

Symbol	Parameter	SO-8	DIP-8	Unit
R _{th(JA)}	Thermal resistance junction to ambient	150	100	°C/W

2.3 Recommended operating conditions

Table 4. Recommended operating conditions

Symbol	Pin	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _{out}	6	Output voltage		(1)		580	V
V _{BS} ⁽²⁾	8	Floating supply voltage		(1)		17	V
f _{sw}		Switching frequency	HVG,LVG load C _L = 1 nF			400	kHz
V _{cc}	3	Supply voltage				17	V
TJ		Junction temperature		-45		125	°C

^{1.} If the condition $\rm V_{boot}$ - $\rm V_{out}$ < 18 V is guaranteed, $\rm V_{out}\,can$ range from -3 to 580 V.

^{2.} $V_{BS} = V_{boot} - V_{out}$.

L6385E Pin connection

3 Pin connection

Figure 2. Pin connection (top view)

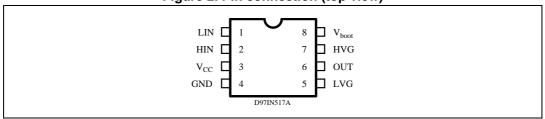


Table 5. Pin description

No.	Pin	Туре	Function	
1	LIN	I	Low-side driver logic input	
2	HIN	I	High-side driver logic input	
3	V _{CC}	Р	Low voltage power supply	
4	GND	Р	Ground	
5	LVG ⁽¹⁾	0	Low-side driver output	
6	OUT	Р	High-side driver floating reference	
7	HVG ⁽¹⁾	0	High-side driver output	
8	V _{boot}	Р	Bootstrap supply voltage	

The circuit guarantees 0.3 V maximum on the pin (at Isink = 10 mA). This allows to omit the "bleeder" resistor connected between the gate and the source of the external MOSFET normally used to hold the pin low.

Electrical characteristics L6385E

4 Electrical characteristics

4.1 AC operation

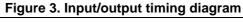
Table 6. AC operation electrical characteristics (V_{CC} = 15 V; T_J = 25 °C)

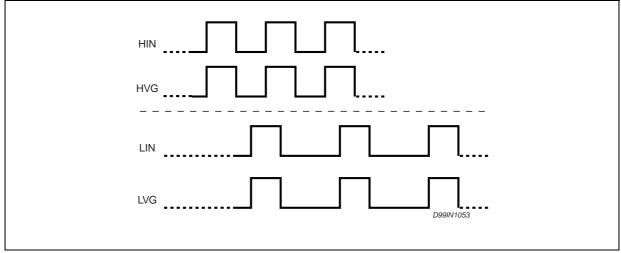
Symbol	Pin	Parameter	Test condition	Min.	Тур.	Max.	Unit
t _{on}	1 vs. 5 2 vs. 7	High/low-side driver turn-on propagation delay	V _{out} = 0 V		110		ns
t _{off}	1 vs. 5 2 vs. 7	High/low-side driver turn-off propagation delay	V _{out} = 0 V		105		ns
t _r	5, 7	Rise time	C _L = 1000 pF		50		ns
t _f	5, 7	Fall time	C _L = 1000 pF		30		ns

4.2 DC operation

Table 7. DC operation electrical characteristics (V_{CC} = 15 V; T_J = 25 °C)

Pin	Parameter	Test condition	Min.	Тур.	Max.	Unit	
Low supply voltage section							
	Supply voltage				17	V	
	V _{CC} UV turn-on threshold		9.1	9.6	10.1	V	
	V _{CC} UV turn-off threshold		7.9	8.3	8.8	V	
3	V _{CC} UV hysteresis			1.3		V	
	Undervoltage quiescent supply current	V _{cc} ≤ 9 V		150	220	μА	
	Quiescent current	V _{in} = 15 V		250	320	μΑ	
	Bootstrap driver on resistance ⁽¹⁾	V _{cc} ≥ 12.5 V		125		Ω	
oed supp	oly voltage section						
	Bootstrap supply voltage				17	V	
	V _{BS} UV turn-on threshold		8.5	9.5	10.5	V	
0	V _{BS} UV turn-off threshold		7.2	8.2	9.2	V	
0	V _{BS} UV hysteresis			1.3		V	
	V _{BS} quiescent current	HVG ON			200	μΑ	
	High voltage leakage current	$V_{hvg} = V_{out} = V_{boot} = 600 \text{ V}$			10	μА	
High/low-side driver							
F 7	Source short-circuit current	$V_{IN} = V_{ih} (t_p < 10 \ \mu s)$	300	400		mA	
5, 1	Sink short-circuit current	$V_{IN} = V_{il} \text{ (tp < 10 } \mu\text{s)}$	450	650		mA	
	y voltage 3	y voltage section Supply voltage V _{CC} UV turn-on threshold V _{CC} UV turn-off threshold V _{CC} UV hysteresis Undervoltage quiescent supply current Quiescent current Bootstrap driver on resistance ⁽¹⁾ ped supply voltage section Bootstrap supply voltage V _{BS} UV turn-on threshold V _{BS} UV turn-off threshold V _{BS} UV hysteresis V _{BS} quiescent current High voltage leakage current ide driver Source short-circuit current	y voltage section Supply voltage V_{CC} UV turn-on threshold V_{CC} UV turn-off threshold V_{CC} UV hysteresis Undervoltage quiescent supply current Quiescent current $V_{in} = 15 \text{ V}$ Bootstrap driver on resistance(1) $V_{CC} \ge 12.5 \text{ V}$ The supply voltage section Bootstrap supply voltage V_{BS} UV turn-on threshold V_{BS} UV turn-off threshold V_{BS} UV hysteresis V_{BS} Quiescent current HVG ON High voltage leakage current $V_{in} = V_{in} = V_{$	y voltage section Supply voltage V_{CC} UV turn-on threshold V_{CC} UV turn-off threshold V_{CC} UV hysteresis V_{CC} Dotter V_{CC} It is a supply voltage section V_{CC} It is a supply voltage V_{CC} UV hysteresis	y voltage section Supply voltage	y voltage section Supply voltage 17 V_{CC} UV turn-on threshold 9.1 9.6 10.1 V_{CC} UV turn-off threshold 7.9 8.3 8.8 V_{CC} UV hysteresis 1.3 Undervoltage quiescent supply current $V_{cc} \le 9 \text{ V}$ 150 220 Bootstrap driver on resistance(1) $V_{cc} \ge 12.5 \text{ V}$ 125 Ded supply voltage section Bootstrap supply voltage 17 V_{BS} UV turn-on threshold 8.5 9.5 10.5 V_{BS} UV turn-off threshold 7.2 8.2 9.2 V_{BS} UV hysteresis 1.3 V_{BS} Quiescent current HVG ON 200 High voltage leakage current $V_{hvg} = V_{out} = V_{boot} = 600 \text{ V}$ 10 ide driver Source short-circuit current $V_{IN} = V_{ih}$ ($t_p < 10 \mu s$) 300 400	


Symbol Pin **Test condition** Min. Unit **Parameter** Тур. Max. Logic inputs Low level logic threshold voltage ٧ 1.5 1, 2 ٧ High level logic threshold voltage 3.6 V_{ih} High level logic input current $V_{IN} = 15 V$ 50 70 I_{ih} μΑ Low level logic input current $V_{IN} = 0 V$ 1 μΑ I_{il}


Table 7. DC operation electrical characteristics (V_{CC} = 15 V; T_J = 25 °C) (continued)

$$\mathsf{R}_{\mathsf{DSON}} = \frac{(\mathsf{V}_{\mathsf{CC}} \!-\! \mathsf{V}_{\mathsf{CBOOT1}}) \!-\! (\mathsf{V}_{\mathsf{CC}} \!-\! \mathsf{V}_{\mathsf{CBOOT2}})}{\mathsf{I}_{1}(\mathsf{V}_{\mathsf{CC}}, \!\mathsf{V}_{\mathsf{CBOOT1}}) \!-\! \mathsf{I}_{2}(\mathsf{V}_{\mathsf{CC}}, \!\mathsf{V}_{\mathsf{CBOOT2}})}$$

where I_1 is pin 8 current when $V_{CBOOT} = V_{CBOOT1}$, I_2 when $V_{CBOOT} = V_{CBOOT2}$.

4.3 Timing diagram

^{1.} $R_{DS(on)}$ is tested in the following way:

Bootstrap driver L6385E

5 Bootstrap driver

A bootstrap circuitry is needed to supply the high voltage section. This function is normally accomplished by a high voltage fast recovery diode (*Figure 4* a). In the L6385E device a patented integrated structure replaces the external diode. It is realized by a high voltage DMOS, driven synchronously with the low-side driver (LVG), with a diode in series, as shown in *Figure 4* b. An internal charge pump (*Figure 4* b) provides the DMOS driving voltage. The diode connected in series to the DMOS has been added to avoid undesirable turn-on.

CBOOT selection and charging

To choose the proper C_{BOOT} value, the external MOS can be seen as an equivalent capacitor. This capacitor C_{EXT} is related to the MOS total gate charge:

Equation 1

$$C_{EXT} = \frac{Q_{gate}}{V_{gate}}$$

The ratio between the capacitors C_{EXT} and C_{BOOT} is proportional to the cyclical voltage loss. It has to be:

$$C_{BOOT}>>>C_{EXT}$$

E.g.: if Q_{gate} is 30nC and V_{gate} is 10V, C_{EXT} is 3nF. With $C_{BOOT} = 100$ nF the drop would be 300 mV.

If HVG has to be supplied for a long time, the C_{BOOT} selection has to take into account also the leakage losses.

E.g.: HVG steady state consumption is lower than 200 μ A, so if HVG T_{ON} is 5 ms, C_{BOOT} has to supply a maximum of 1 μ C to C_{EXT}. This charge on a 1mF capacitor means a voltage drop of 1 V.

The internal bootstrap driver gives great advantages: the external fast recovery diode can be avoided (it usually has a great leakage current).

This structure can work only if V_{OUT} is close to GND (or lower) and in the meanwhile the LVG is on. The charging time (T_{charge}) of the C_{BOOT} is the time in which both conditions are fulfilled and it has to be long enough to charge the capacitor.

The bootstrap driver introduces a voltage drop due to the DMOS R_{DSON} (typical value: 125 Ω). At low frequency this drop can be neglected. Anyway increasing the frequency it must be taken in to account.

The following equation is useful to compute the drop on the bootstrap DMOS:

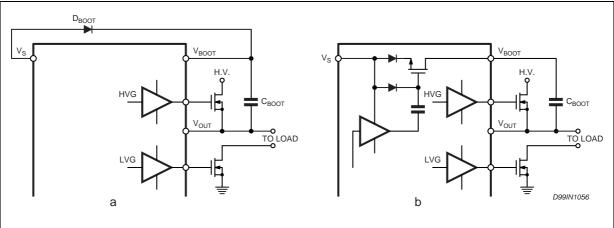
Equation 2

$$V_{drop} = I_{charge}R_{dson} \rightarrow V_{drop} = \frac{Q_{gate}}{T_{charge}}R_{dson}$$

where Q_{gate} is the gate charge of the external power MOS, R_{dson} is the on resistance of the bootstrap DMOS, and T_{charge} is the charging time of the bootstrap capacitor.

8/15 DocID13863 Rev 3

L6385E Bootstrap driver


For example: using a power MOS with a total gate charge of 30 nC the drop on the bootstrap DMOS is about 1 V, if the T_{charge} is 5 ms. In fact:

Equation 3

$$V_{drop} \,=\, \frac{30nC}{5\mu s} \cdot 125\Omega \sim 0.8V$$

 V_{drop} has to be taken into account when the voltage drop on C_{BOOT} is calculated: if this drop is too high, or the circuit topology doesn't allow a sufficient charging time, an external diode can be used.

Figure 4. Bootstrap driver

Typical characteristic L6385E

6 Typical characteristic

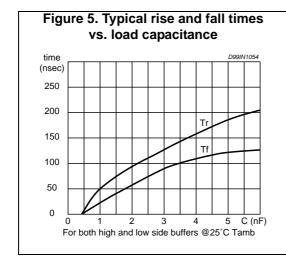
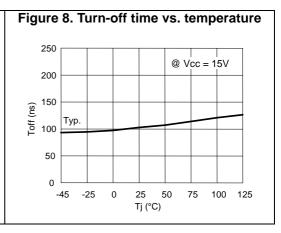
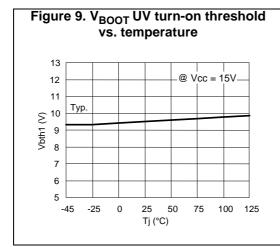
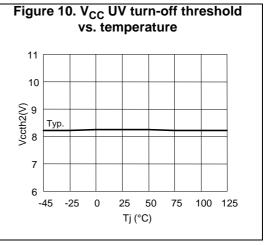
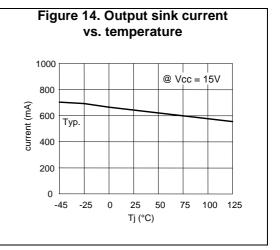





Figure 7. Turn-on time vs. temperature 250 @ Vcc = 15V 200 (su) uo_L 100 150 50 0 -25 0 50 100 125 -45 25 75 Tj (°C)



10/15 DocID13863 Rev 3

Figure 12. Output source current vs. temperature 1000 @ Vcc = 15V 800 current (mA) 600 400 200 -45 -25 0 25 50 75 100 125 Tj (°C)

Figure 13. V_{CC} UV turn-on threshold vs. temperature

13
12
11
10
9
17yp.
8
7
-45 -25 0 25 50 75 100 125
Tj (°C)

Package information L6385E

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

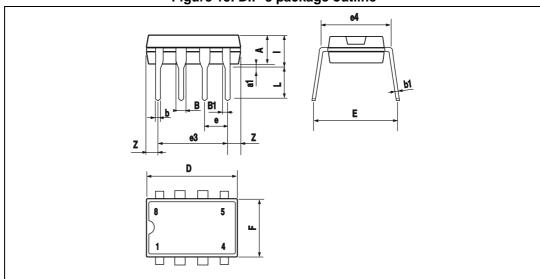


Figure 15. DIP-8 package outline

Table 8. DIP-8 package mechanical data

Sumbal	Dimensions (mm)			Dimensions (inch)		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
Α		3.32			0.131	
a1	0.51			0.020		
В	1.15		1.65	0.045		0.065
b	0.356		0.55	0.014		0.022
b1	0.204		0.304	0.008		0.012
D			10.92			0.430
Е	7.95		9.75	0.313		0.384
е		2.54			0.100	
e3		7.62			0.300	
e4		7.62			0.300	
F			6.6			0.260
I			5.08			0.200
L	3.18		3.81	0.125		0.150
Z			1.52			0.060

12/15 DocID13863 Rev 3

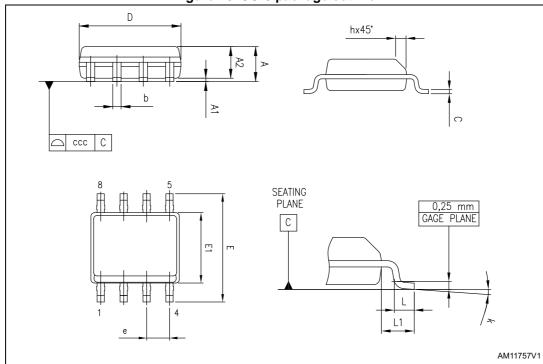


Figure 16. SO-8 package outline

Table 9. SO-8 package mechanical data

Symbol	С	imensions (m	m)	Dimensions (inch)		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.750			0.0689
A1	0.100		0.250	0.0039		0.0098
A2	1.250			0.0492		
b	0.280		0.480	0.0110		0.0189
С	0.170		0.230	0.0067		0.0091
D ⁽¹⁾	4.800	4.900	5.000	0.1890	0.1929	0.1969
Е	5.800	6.000	6.200	0.2283	0.2362	0.2441
E1 ⁽²⁾	3.800	3.900	4.000	0.1496	0.1535	0.1575
е		1.270			0.0500	
h	0.250		0.500	0.0098		0.0197
L	0.400		1.270	0.0157		0.0500
L1		1.040			0.0409	
k	0°		8°	0°		8°
ccc			0.10			0.0039

Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 mm in total (both sides).

Dimension "E1" does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25 mm per side.

Revision history L6385E

8 Revision history

Table 10. Document revision history

Date	Revision	Changes
02-Oct-2007	1	First release
19-Jun-2014	2	Added Section: Applications on page 1. Updated Section: Description on page 1 (replaced by new description). Updated Table 1: Device summary on page 1 (moved from page 15 to page 1, renamed title of Table 1). Updated Figure 1: Block diagram on page 3 (moved from page 1 to page 3, added Section 1: Block diagram on page 3). Updated Section 2.1: Absolute maximum ratings on page 4 (removed note below Table 2: Absolute maximum ratings). Updated Table 5: Pin description on page 5 (updated "Pin" and "Type"). Updated Section: CBOOT selection and charging on page 8 (updated values of "E.g.: HVG"). Numbered Equation 1 on page 8, Equation 2 on page 8 and Equation 3 on page 9. Updated Section 7: Package information on page 12 [updated/added titles, reversed order of Figure 15 and Table 8, Figure 16 and Table 9 (numbered tables), removed 3D package figures, minor modifications]. Minor modifications throughout document.
01-Dec-2014	3	Updated Section: Description on page 1. Updated Table 7 on page 6 (corrected typo in units of "I _{so} " and "I _{si} " parameters).

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics - All rights reserved

