Monolithic Linear IC # Multi Voltage Regulator IC for Car Audio Systems http://onsemi.com #### Overview The LV56831P has 4 system regulator, V_{DD} 5V(3.3V), AUDIO(8.5V), AMP remote(12V) and REG(3.3V/5V select). About protection circuits, it has Over-current-protection, Over-voltage-protection and Thermal-shut-down. AMP remote and REG supply is independent terminal from V_{CC} , #### **Features** • 4 system regulator V_{DD}(LCD micon) : V_{OUT} 5.0V(3.3V), I_O max 300mA, reverse current prevention. $\begin{array}{lll} \text{Audio} & : \text{V}_{\mbox{OUT}} \ 8.5 \mbox{V, I}_{\mbox{O}} \mbox{max } 400 \mbox{mA} \\ \text{AMP remote} & : \text{V}_{\mbox{OUT}} \ 12 \mbox{V, I}_{\mbox{O}} \mbox{max } 500 \mbox{mA} \\ \text{REG3.3/5V} & : \text{V}_{\mbox{OUT}} \ 3.3 \mbox{V(5V), I}_{\mbox{O}} \mbox{max } 500 \mbox{mA} \end{array}$ • Over-current-protection • Over-voltage-protection: Typ 21V(except V_{DD}) • Thermal-shut-down Typ 175°C • Applied Pch-LDMOS for output stages. (Warning)The protector functions only improve the IC's tolerance and they do not guarantee the safety of the IC if used under the conditions out of safety range or ratings. Use of the IC such as use under overcurrent protection range or thermal shut down state may degrade the IC's reliability and eventually damage the IC. #### **Specifications** #### **Absolute Maximum Ratings** at Ta = 25°C | Parameter | Conditions | Conditions | Ratings | Unit | |-------------------------------|----------------------|--------------------------------|-------------|------| | Supply voltage | V _{CC} max | | 36 | V | | Allowable Power dissipation | Pd max | IC unit | 1.3 | W | | | (*Ta ≤ 25°C) | With Al heatsink(50×50×1.5mm³) | 5.3 | W | | | | Infinite heat rediation | 26 | W | | Peak supply voltage | V _{CC} peak | See below pulse wave. | 50 | V | | Operating ambient temperature | Topr | | -40 to +85 | °C | | Storage temperature | Tstg | | -55 to +150 | °C | | Junction temperature | Tj max | | 150 | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. # Peak voltage testing pulse wave # Recommended Operating condition at $Ta = 25^{\circ}C$ | Parameter | Conditions | Ratings | Unit | |-------------------------------|--|----------|------| | Power supply voltage rating 1 | V _{DD} output(5V/3.3V) | 7 to 16 | V | | Power supply voltage rating 2 | REG output(5V3.3V): V _{CC} =V _{CC} 1 | 7 to 16 | V | | Power supply voltage rating 3 | AUDIO output | 11 to 16 | V | | Power supply voltage rating 4 | AMP remote output: V _{CC} =V _{CC} 1 | 13 to 16 | V | # Electrical Characteristics $\underline{at\ Ta}=25^{\circ}C,\ V_{CC}=V_{CC}1$ =14.4V (*1) | Doromotor | Courselle al | Conditions | Ratings | | | Linit | |--|-----------------------|--|---------|--------|------|-------| | Parameter | Symbol | Symbol Conditions | | typ | max | Unit | | Quiescent current | lcc | V _{DD} no load, ALL EN terminal = L | | 50 | 100 | μΑ | | AUDIO_EN Input | | • | | | | | | Low input voltage | V _{IL} 1 | | 0 | | 0.5 | V | | High input voltage | V _{IH} 1 | | 2.0 | | 5.5 | V | | Input impedance | R _{IH} 1 | | 280 | 400 | 520 | kΩ | | AMP_EN Input | | | | | | | | Low input voltage | V _{IL} 2 | | 0 | | 0.5 | V | | High input voltage | V _{IH} 2 | | 2.0 | | 5.5 | V | | Input impedance | R _{IH} 2 | | 280 | 400 | 520 | kΩ | | REG_EN input | • | | | • | | | | Low input voltage | V _{IL} 3 | | 0 | | 0.5 | V | | High input voltage | V _{IH} 3 | | 2.0 | | 5.5 | V | | Input impedance | R _{IH} 3 | | 280 | 400 | 520 | kΩ | | V _{DD} (5V/3.3V)output(revers | se current prevention | on diode implemented) | | | | | | V _{DD} output voltage 1 | V _O 11 | I _O 11 = 200mA, IKV _{DD} is connected to 5PIN. | 4.75 | 5.0 | 5.25 | V | | V _{DD} output current 1 | I _O 11 | V _O 11 ≥ 4.7V | 300 | | | mA | | V _{DD} output voltage 2 | V _O 12 | I _O 12 = 200mA, IKV _{DD} =GND | 3.13 | 3.3 | 3.47 | V | | V _{DD} output current 2 | I _O 12 | V _O 12 ≥ 3.1V | 300 | | | mA | | Line regulation | ΔV _{OLN} 1 | 7V < V _{CC} < 16V, I _O 1 = 200mA | | 50 | 100 | mV | | Load regulation | ∆V _{OLD} 1 | 1mA < I _O 11, I _O 12 < 200mA | | 80 | 150 | mV | | Dropout voltage 1 | V _{DROP} 1 | I _O 1 = 200mA (implemented diode) | | 1.5 | 2.5 | V | | V _{CC} ripple rejection | R _{REJ} 1 | f=120Hz, I _O 1=200mA | 40(*2) | 50(*2) | | dB | | V _{DD} reverse current | I _{REV} | V _O 11=5.0V, V _{CC} =0V | | 10 | 100 | μΑ | | AMP remote output ; AMP_ | EN = High | • | | | | | | USB output voltage 1 | V _O 2 | I _O 2 = 400mA | 11.4 | 12 | 12.6 | V | | USB output current 1 | I _O 2 | V _O 2 ≥ 11.3V | 500 | | | mA | | Line regulation | ΔV _{OLN} 2 | 13V < V _{CC} 1 < 16V, I _O 2 = 400mA | | 50 | 100 | mV | | Load regulation | ∆V _{OLD} 2 | 10mA < I _O 2 < 400mA | | 80 | 160 | mV | | Dropout voltage 1 | V _{DROP} 2 | I _O 2 = 400mA | | 0.4 | 0.8 | ٧ | | V _{CC} 1 ripple rejection | R _{REJ} 2 | f=120Hz, I _O 2=400mA | 40(*2) | 50(*2) | | dB | Continued on next page. Continued from preceding page. | Doromotor | Cumb al | Condition - | Ratings | | | 11.2 | |------------------------------------|---------------------|---|---------|--------|------|------| | Parameter | Symbol | Conditions | min | typ | max | Unit | | AUDIO output ; AUDIO_EN | = High | | | | | | | AUDIO output voltage | V _O 3 | I _O 3 = 300mA | 8.1 | 8.5 | 8.9 | V | | AUDIO output current | I _O 3 | V _O 3 ≥ 8V | 400 | | | mA | | Line regulation | ΔV _{OLN} 3 | 10V < V _{CC} < 16V, I _O 3 = 300mA | | 30 | 100 | mV | | Load regulation | ΔV _{OLD} 3 | 1mA < I _O 3 < 300mA | | 70 | 140 | mV | | Dropout voltage | V _{DROP} 3 | I _O 3 = 300mA | | 0.6 | 1.05 | V | | V _{CC} ripple rejection | R _{REJ} 3 | f = 120Hz, I _O 3=300mA | 40(*2) | 50(*2) | | dB | | REG (3.3V/5V) Output ; REG | G_EN = High | | | | | | | REG output voltage 1 | V _O 41 | I _O 41 = 400mA, IKREG is connected to 10PIN. | 4.75 | 5 | 5.25 | V | | REG output current 1 | I _O 41 | V _O 41 ≥ 4.7V | 500 | | | mA | | REG output voltage 2 | V _O 42 | I _O 42 = 400mA, IKREG=GND | 3.13 | 3.3 | 3.47 | V | | REG output current 2 | I _O 42 | V _O 42 ≥ 3.1V | 500 | | | mA | | Line regulation | ΔV _{OLN} 4 | 7V < V _{CC} 1 < 16V, I _O 4 = 400mA | | 30 | 100 | mV | | Load regulation | ΔV _{OLD} 4 | 1mA < I _O 4 < 400mA | | 80 | 150 | mV | | Dropout voltage | V _{DROP} 4 | I _O 4 = 400mA | | 1.0 | 1.5 | V | | V _{CC} 1 ripple rejection | R _{REJ} 4 | f = 120Hz, I _O 4=400mA | 40(*2) | 50(*2) | | dB | ^{*1:} The entire specification has been defined based on the tests performed under the conditions where Tj and Ta(=25°C) are almost equal. There tests were performed with pulse load to minimize the increase of junction temperature(Tj). # **Package Dimensions** unit: mm (typ) # Pin assignment ^{*2 :} design certification # Allowable power dissipation derating curve - (a) IC unit(HZIP15) - (b) With Al heatsink(50×50×1.5mm³) Al heatsink mounting conditions Tightening torque: 39N·cm, using silicone grease # **Block Diagram** ### **Pin Function** | Pin Fu | nction | | | |---------|-------------------|--|---| | Pin No. | Pin name | Description | Equivalent Circuit | | 1 | N.C. | - | - | | 2 | AUDIO_EN | AUDIO output CTRL | 8 VCC 2 10kΩ FILW-() \$ 120kΩ GND | | 3 | AUDIO | AUDIO output when AUDIO_EN = High, ON 8.5V/0.4A | 8 Vcc 3 × 263kΩ × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × | | 4 | N.C. | - | - | | 5 | VDD | V _{DD} output
5.0V, 3.3V/0.3A | 8 VCC 5 190kΩ HX GND | | 6 | IKV _{DD} | V _{DD} output voltage select OPEN: V _{DD} = 5.0V GND: V _{DD} = 3.3V | 8 0.25μA 0.25μA (10kΩ) GND | | 7 | N.C. | - | - | | 8 | Vcc | Vcc | 8 | | 9 | V _{CC} 1 | VCC1 | GND GND | Continued on next page. | Pin No. | om preceding pag | ge. Description | Equivalent Circuit | |---------|------------------|--|---| | | | | Equivalent Circuit | | 10 | REG_EN | REG output CTRL | 9 VCC1 10 | | | | | | | 11 | IKREG | REG output voltage select OPEN: REG = 3.3V GND: REG = 5.0V | 9 VCC1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 | | 12 | AMP_EN | AMP output CTRL | 9 VCC1 12 10kΩ 270kΩ 3120kΩ GND | | 13 | AMP | AMP output when AMP_EN = High, ON 12V, 0.5A | 9 VCC1 (13) (13) (14) (14) (14) (14) (15) (15) (15) (15) (15) (15) (15) (15 | | 14 | GND | GND | | | 15 | REG | REG output when REG_EN = High, ON 5.0V, 3.3V/0.5A | 9 V _{CC} 1 15 860kΩ H C C C C C C C C C C C C C C C C C C | #### HZIP15 Heat sink attachment Heat sinks are used to lower the semiconductor device junction temperature by leading the head generated by the device to the outer environment and dissipating that heat. a. Unless otherwise specified, for power ICs with tabs and power ICs with attached heat sinks, solder must not be applied to the heat sink or tabs. #### b. Heat sink attachment - · Use flat-head screws to attach heat sinks. - · Use also washer to protect the package. - · Use tightening torques in the ranges 39-59Ncm(4-6kgcm) . - · If tapping screws are used, do not use screws with a diameter larger than the holes in the semiconductor device itself. - · Do not make gap, dust, or other contaminants to get between the semiconductor device and the tab or heat sink. - · Take care a position of via hole. - · Do not allow dirt, dust, or other contaminants to get between the semiconductor device and the tab or heat sink. - · Verify that there are no press burrs or screw-hole burrs on the heat sink. - · Warping in heat sinks and printed circuit boards must be no more than 0.05 mm between screw holes, for either concave or convex warping. - · Twisting must be limited to under 0.05 mm. - · Heat sink and semiconductor device are mounted in parallel. Take care of electric or compressed air drivers - The speed of these torque wrenches should never exceed 700 rpm, and should typically be about 400 rpm. #### c. Silicone grease - · Spread the silicone grease evenly when mounting heat sinks. - · Our company recommends YG-6260 (Momentive Performance Materials Japan LLC) #### d. Mount - · First mount the heat sink on the semiconductor device, and then mount that assembly on the printed circuit board. - · When attaching a heat sink after mounting a semiconductor device into the printed circuit board, when tightening up a heat sink with the screw, the mechanical stress which is impossible to the semiconductor device and the pin doesn't hang. - e. When mounting the semiconductor device to the heat sink using jigs, etc., - · Take care not to allow the device to ride onto the jig or positioning dowel. - \cdot Design the jig so that no unreasonable mechanical stress is not applied to the semiconductor device. #### f. Heat sink screw holes - · Be sure that chamfering and shear drop of heat sinks must not be larger than the diameter of screw head used. - · When using nuts, do not make the heat sink hole diameters larger than the diameter of the head of the screws used. A hole diameter about 15% larger than the diameter of the screw is desirable. - · When tap screws are used, be sure that the diameter of the holes in the heat sink are not too small. A diameter about 15% smaller than the diameter of the screw is desirable. - g. There is a method to mount the semiconductor device to the heat sink by using a spring band. But this method is not recommended because of possible displacement due to fluctuation of the spring force with time or vibration. ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa