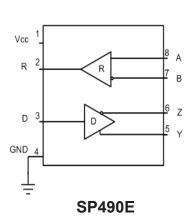
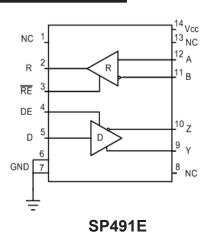


SP490E/491E

Enhanced Full Duplex RS-485 Transceivers

FEATURES


- +5V Only
- Low Power BiCMOS
- Driver/Receiver Enable (SP491E)
- RS-485 and RS-422 Drivers/Receivers
- Pin Compatible with LTC490 and SN75179 (SP490E)
- Pin Compatible with LTC491 and SN75180 (SP491E)
- · Improved ESD Specifications:
 - ±15kV Human Body Model
 - ±15kV IEC61000-4-2 Air Discharge


Now Available in Lead Free Packaging

DESCRIPTION

The **SP490E** is a low power differential line driver/receiver meeting RS-485 and RS-422 standards up to 10Mbps. The **SP491E** is identical to the **SP490E** with the addition of driver and receiver tri-state enable lines. Both products feature ±200mV receiver input sensitivity, over wide common mode range. The **SP490E** is available in 8-pin plastic DIP and 8-pin NSOIC packages for operation over the commercial and industrial temperature ranges. The **SP491E** is available in 14-pin DIP and 14-pin NSOIC packages for operation over the commercial and industrial temperature ranges.

BLOCK DIAGRAMS

ABSOLUTE MAXIMUM RATINGSThese are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

V	+7\
V _{cc} Input Voltages	
Drivers	0.5V to (V _{cc} +0.5V
	±14\
Output Voltages	
Drivers	±14\
Receivers	0.5V to (V _{cc} +0.5V
Receivers Storage Temperature	65°C to +150°
Power Dissipation	

ELECTRICAL CHARACTERISTICS

 $\rm T_{MIN}$ to $\rm T_{MAX}$ and $\rm V_{CC}$ = 5V \pm 5% unless otherwise noted.

GND 2 1.5		V _{cc}	Volts	
2		V _{cc}	Volte	
1.5		CC	Volts	Unloaded; $R = \infty$; see figure 1 With Load; $R = 50\Omega$; (RS422); see figure 1
		V _{cc}	Volts	With Load; R = 27Ω ; (RS485); see figure 1
2.0		0.2 3 0.8 ±10	Volts Volts Volts Volts Volts µA	R = 27Ω or R = 50Ω ; see figure 1 R = 27Ω or R = 50Ω ; see figure 1 Applies to D Applies to D Applies to D
		250 250	mA mA	-7V ≤ V _o ≤ +12V -7V ≤ V _o ≤ +12V
10	30 30	60 60	Mbps ns ns	$\begin{aligned} & t_{\text{pLH}}; R_{\text{DIFF}} = 54\Omega, C_{\text{L1}} = C_{\text{L2}} = 100 \text{pF}; \\ & see \textit{figures} 3 \textit{and} 5 \\ & t_{\text{pH}}; R_{\text{DIFF}} = 54\Omega, C_{\text{L1}} = C_{\text{L2}} = 100 \text{pF}; \\ & see \textit{figures} 3 \textit{and} 5 \end{aligned}$
	5		ns	see figures 3 and 5,
	15	40	ns	$\begin{array}{l} {\rm t_{SKEW}} = ~{\rm t_{DPLH}} - {\rm t_{DPHL}} \\ {\rm From}~10\%~{\rm to}~90\%; ~{\rm R_{DIFF}} = 54\Omega, \\ {\rm C_{L1}} = {\rm C_{L2}} = 100 {\rm pF}; ~{\rm see}~{\it figures}~3~{\it and}~5 \end{array}$
-0.2 3.5 12	70 15	+0.2 0.4 ±1.0 -0.8 85	Volts mV Volts Volts kΩ mA mA mA	$ \begin{array}{l} -7 \text{V} \leq \text{V}_{\text{CM}} \leq 12 \text{V} \\ \text{V}_{\text{CM}} = 0 \text{V} \\ \text{I}_{\text{O}} = -4 \text{mA}, \text{V}_{\text{ID}} = +200 \text{mV} \\ \text{I}_{\text{O}} = +4 \text{mA}, \text{V}_{\text{ID}} = -200 \text{mV} \\ -7 \text{V} \leq \text{V}_{\text{CM}} \leq 12 \text{V} \\ \text{V}_{\text{IN}} = 12 \text{V} \\ \text{V}_{\text{IN}} = -7 \text{V} \\ 0 \text{V} \leq \text{V}_{\text{O}} \leq \text{V}_{\text{CC}} \end{array} $
	-0.2 3.5	10 30 30 5 15 -0.2 70 3.5	2.0 0.8 ±10 250 250 10 30 60 30 60 5 15 40 -0.2 70 3.5 12 15 41.0 -0.8	2.0

 $\rm T_{_{MIN}}$ to $\rm T_{_{MAX}}$ and $\rm V_{_{CC}}$ = 5V \pm 5% unless otherwise noted.

PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
SP490E RECEIVER					
AC Characteristics					
Maximum Data Rate	10			Mbps	
Receiver Input to Output	20	45	100	ns ·	t_{out} ; $R_{\text{out}} = 54\Omega$,
					t_{PLH} ; $R_{DIFF} = 54\Omega$, $C_{L1} = C_{L2} = 100 pF$; Figures 3 & 7
Receiver Input to Output	20	45	100	ns	t_{DII} ; $R_{\text{DIII}} = 54\Omega$,
·					$C_{13}^{\text{FIL}} = C_{13}^{\text{FIF}} = 100 \text{pF}$; Figures 3 & 7
Diff. Receiver Skew It _{PLH} -t _{PHI} I		13		ns	$ \begin{array}{l} t_{\rm DHL}^{\rm LI}; R_{\rm DIFF}^{\rm LI} = 54\Omega, \\ C_{\rm L1} = C_{\rm L2}^{\rm L2} = 100 {\rm pF}; \ \emph{Figures 3 \& 7} \\ R_{\rm DIFF} = 54\Omega; \ C_{\rm L1} = C_{\rm L2} = 100 {\rm pF}; \end{array} $
PLN FNL					Figures 3 & 7
POWER REQUIREMENTS					
Supply Voltage	+4.75		+5.25	Volts	
Supply Current		900	0.20	μΑ	
Cuppiy Callon				M. 1	
ENVIRONMENTAL AND					
MECHANICAL					
Operating Temperature					
Commercial (_C_)	0		+70	°C	
Industrial (E)	-40		+85	°Č	
Storage Temperature	-65		+150	°Č	
Package					
Plastic DIP (P)					
NSOIC (N)					

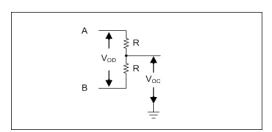


Figure 1. Driver DC Test Load Circuit

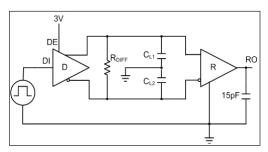


Figure 3. Driver/Receiver Timing Test Circuit

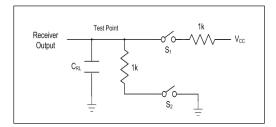


Figure 2. Receiver Timing Test Load Circuit

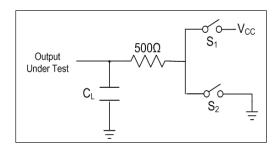


Figure 4. Driver Timing Test Load #2 Circuit

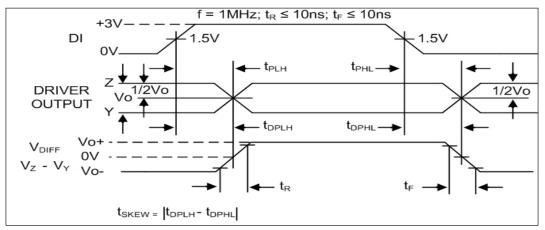


Figure 5. Driver Propagation Delays

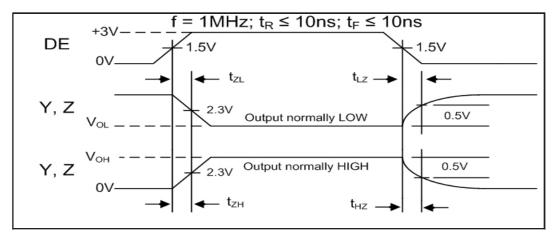


Figure 6. Driver Enable and Disable Times

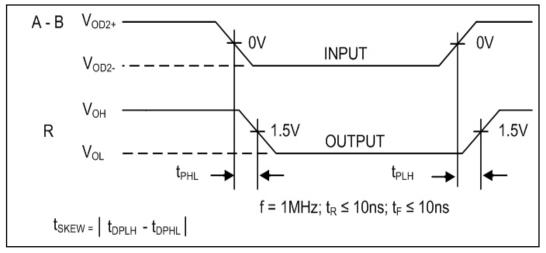


Figure 7. Receiver Propagation Delays

ABSOLUTE MAXIMUM RATINGS
These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

V _{cc}	+7V
Input Voltages	
Logic	0.5V to (V _{cc} +0.5V)
Drivers	0.5V to (V _{cc} +0.5V)
Receivers	±14Ý
Output Voltages	
Logic	0.5V to (V _{cc} +0.5V)
	±14Ý
Receivers	0.5V to (V _{cc} +0.5V)
Storage Temperature	
Power Dissipation	

ELECTRICAL CHARACTERISTICS

 T_{MIN} to T_{MAX} and V_{CC} = 5V ± 5% unless otherwise noted.

PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
SP491E DRIVER					
DC Characteristics	ONE		.,	l . , , ,	
Differential Output Voltage	GND		V _{cc}	Volts	Unloaded; R = ∞ ; see figure 1
Differential Output Voltage	2		V _{cc}	Volts	With Load; R = 50Ω ; (RS422); see figure 1
Differential Output Voltage	1.5		V _{cc}	Volts	With Load; R = 27Ω ; (RS485); see figure
Change in Magnitude of Driver					_
Differential Output Voltage for					
Complimentary States			0.2	Volts	$R = 27\Omega$ or $R = 50\Omega$; see figure 1
Driver Common-Mode Output Voltage			3	Volts	$R = 27\Omega$ or $R = 50\Omega$; see figure 1
Input High Voltage	2.0		3	Volts	Applies to D, RE, DE
Input Low Voltage			0.8	Volts	Applies to D, RE, DE
Input Current			±10	μA	Applies to D, RE, DE
Driver Short-Circuit Current					
V _{OUT} = HIGH			250	mA	-7V ≤ V ₀ ≤ 12V
V _{OUT} = LOW			250	mA	-7V ≤ V _o ≤ 12V
SP491E DRIVER					
AC Characteristics	40				5/ BE 5/
Maximum Data Rate	10	20	60	Mbps	RE = 5V, DE = 5V
Driver Input to Output		30	60	ns	t_{PLH} ; $R_{DIFF} = 54\Omega$, $C_{L1} = C_{L2} = 100pF$; see figures 3 and 5
Driver Input to Output		30	60	ns	t_{PHL} ; $R_{DIFF} = 54\Omega$, $C_{L1} = C_{L2} = 100pF$;
, production and the second					see figures 3 and 5
Driver Skew		5	10	ns	see figures 3 and 5,
Driver Dies en Fall Tire		4.5	40		$t_{SKEW} = t_{DPLH} - t_{DPHL} $ From 10% to 90%; $R_{DIFF} = 54\Omega$,
Driver Rise or Fall Time		15	40	ns	FIGITI 10% TO 90%; K _{DIFF} = 54Ω,
Driver Enable to Output High		40	70	ns	$C_{L1} = C_{L2} = 100 \text{pF}$; see figures 3 and 5 $C_{L1} = C_{L2} = 100 \text{pF}$; see figures
2s. Enable to Sutput High					4 and 6; S ₂ closed
Driver Enable to Output Low		40	70	ns	$C_{L1} = C_{L2} = 100 \text{pF}$; see figures
					4 and 6; S ₁ closed
Driver Disable Time from Low		40	70	ns	$A_{11} = A_{12} = A_{13} = A$
Driver Disable Time from High		40	70	ns	$C_{L1} = C_{L2} = 100 \text{pF}$; see figures
Divoi Disable Time Itolii High		70	'0	113	$G_{L1} = G_{L2} = 100 \text{pr}$, see figures 4 and 6; S_2 closed
					3 5, 52 5.555

 T_{min} to T_{max} and V_{cc} = 5V ± 5% unless otherwise noted.

PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
SP491E RECEIVER				55	
DC Characteristics					
Differential Input Threshold	-0.2		+0.2	Volts	-7V ≤ V _{CM} ≤ 12V
Input Hysteresis		70		mV	$V_{cM} = 0V$
Output Voltage High	3.5			Volts	$I_0 = -4 \text{mA}, V_D = +200 \text{mV}$
Output Voltage Low			0.4	Volts	$I_{o}^{=}$ -4mA, V_{iD} = +200mV I_{o} = +4mA, V_{iD} = -200mV
Three State (high impedance)					
Output Current			±1	μA	$0.4V \le V_o \le 2.4V$; $\overline{RE} = 5V$
Input Resistance	12	15		kΩ	-7V ≤ V _{CM} ≤ 12V
Input Current (A, B); V _{IN} = 12V			±1.0	mA	DE = 0V, V_{CC} = 0V or 5.25V, V_{IN} = 12V
Input Current (A, B); V _{IN} = -7V			-0.8	mA	DE = 0V, V_{CC}^{CC} = 0V or 5.25V, V_{IN}^{IN} = -7V
Short-Circuit Current			85	mA	$0V \le V_0 \le V_{CC}$
SP491E RECEIVER					
AC Characteristics					
Maximum Data Rate	10			Mbps	RE = 0V
Receiver Input to Output	20	45	100	ns ·	t_{PLH} ; $R_{DIFF} = 54\Omega$,
					$C_{L1}^{EER} = C_{L2}^{EFF} = 100 \text{pF}$; Figures 3 & 7 t_{PHL}^{EER} ; $R_{DIFF} = 54 \Omega$,
Receiver Input to Output	20	45	100	ns	t_{PHI} ; $R_{DIFF} = 54\Omega$,
					$C_{11} = C_{12} = 100 \text{pF}$; Figures 3 & 7
Diff. Receiver Skew It _{PLH} -t _{PHL} I		13		ns	$R_{DIFF}^{2} = 54\Omega; C_{L1} = C_{L2} = 100pF;$
					Figures 3 & 7
Receiver Enable to Output Low		45	70	ns	C _{RL} = 15pF; Figures 2 and 8; S ₁ closed
Receiver Enable to Output High		45	70	ns	C _{RL} = 15pF; Figures 2 and 8; S ₂ closed
Receiver Disable from Low		45 45	70 70	ns	C _{RL} = 15pF; Figures 2 and 8; S ₁ closed
Receiver Disable from High		45	70	ns	C_{RL} = 15pF; Figures 2 and 8; S_2 closed
POWER REQUIREMENTS					
Supply Voltage	+4.75		+5.25	Volts	
1 ,	1.7.70	900	. 0.20		
Supply Current SP491E ENVIRONMENTAL		900		μA	\overline{RE} , D = 0V or V_{CC} ; DE = V_{CC}
AND MECHANICAL					
Operating Temperature					
Commercial (C)	0		+70	°C	
Industrial (E)	-40		+85	°Č	
Storage Temperature	-65		+150	°C	
Package					
Plastic DIP (_P)					
NSOIC (_N)					

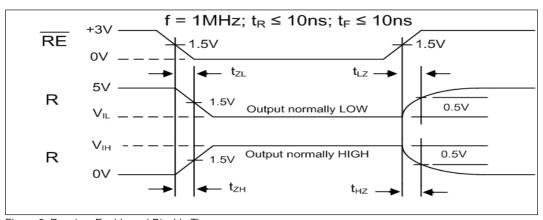


Figure 8. Receiver Enable and Disable Times

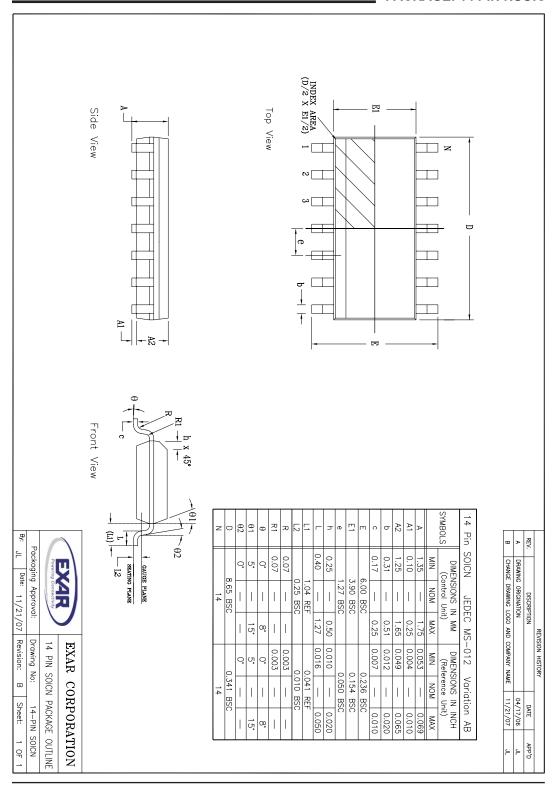
DESCRIPTION

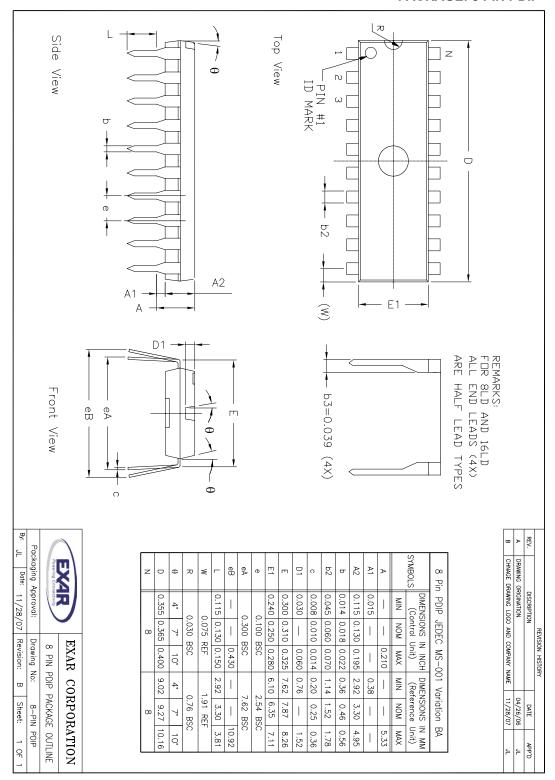
The **SP490E** and **SP491E** are full-duplex differential transceivers that meet the requirements of RS-485 and RS-422. Fabricated with a **Exar** proprietary BiCMOS process, both products require a fraction of the power of older bipolar designs.

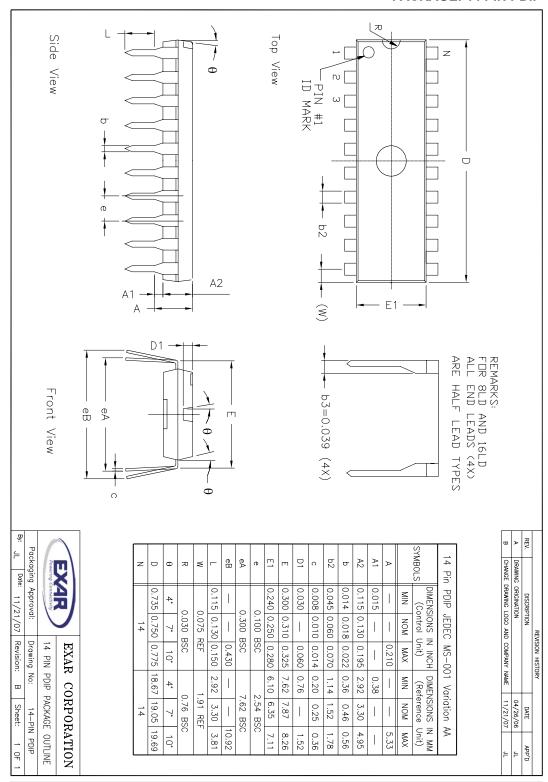
The RS-485 standard is ideal for multi-drop applications or for long-distance interfaces. RS-485 allows up to 32 drivers and 32 receivers to be connected to a data bus, making it an ideal choice for multi-drop applications. Since the cabling can be as long as 4,000 feet, RS-485 transceivers are equipped with a wide (-7V to +12V) common mode range to accommodate ground potential differences. Because RS-485 is a differential interface, data is virtually immune to noise in the transmission line.

Driver...

The drivers for both the **SP490E** and **SP491E** have differential outputs. The typical voltage output swing with no load will be 0 volts to +5 volts. With worst case loading of 54Ω across the differential outputs, the driver can maintain greater than 1.5V voltage levels.


The driver of the **SP491E** has a driver enable control line which is active high. A logic high on DE (pin 4) of the **SP491E** will enable the differential driver outputs. A logic low on DE (pin 4) of the **SP491E** will tri-state the driver outputs. The **SP490E** does not have a driver enable.


Receiver...


The receivers for both the **SP490E** and **SP491E** have differential inputs with an input sensitivity as low as ± 200 mV. Input impedance of the receivers is typically $15k\Omega$ ($12k\Omega$ minimum). A wide common mode range of -7V to +12V allows for large ground potential differences between systems. The receivers for both the **SP490E** and **SP491E** are equipped with the fail-safe feature. Fail-safe guarantees that the receiver output will be in a high state when the input is left unconnected.

The receiver of the **SP491E** has a receiver enable control line which is active low. Alogic low on REB (pin 3) of the **SP491E** will enable the differential receiver. A logic high on REB (pin 3) of the **SP491E** will tri-state the receiver.

ORDERING INFORMATION

Model	Temperature Range	Package
	0°C to +70°C	
	0°C to +70°C	
SP490ECP-L	0°C to +70°C	8-Pin PDIP
SP490EEN-L	40°C to +85°C	8-Pin NSOIC
	-40°C to +85°C	
SP490EEP-L	-40°C to +85°C	8-Pin PDIP
	0°C to +70°C	
	0°C to +70°C	
SP491ECP-L	0°C to +70°C	14-Pin PDIP
SP491EEN-L	-40°C to +85°C	14-Pin NSOIC
	40°C to +85°C	
SP491EEP-L	-40°C to +85°C	14-Pin PDIP

Note: /TR = Tape and Reel

REVISION HISTORY

Date	Revision	Description
2000	14	Sipex Legacy Data Sheet
May 2011	1.0.0	Convert to Exar format. Remove driver propagation delay minimum and driver rise/fall time minimum entry for SP490E and SP491E. Update ESD rating to IEC61000-4-2. Update ordering information.
May 2013	1.0.1	Correct type errors per PCN 13-0503-01

Notice

EXAR Corporation reserves the right to make changes to any products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no representation that the circuits are free of patent infringement. Charts and schedules contained herein are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writting, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 2013 EXAR Corporation

Datasheet May 2013

Send your serial transceiver technical inquiry with technical details to: serialtechsupport@exar.com

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.