

Is Now Part of

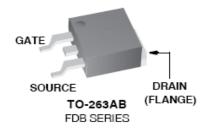
ON Semiconductor®

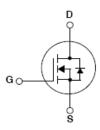
To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

FDB8442

N-Channel PowerTrench® MOSFET 40V, 80A, 2.9m Ω


Features


- Typ $r_{DS(on)} = 2.1 \text{m}\Omega$ at $V_{GS} = 10 \text{V}$, $I_D = 80 \text{A}$
- Typ $Q_{g(10)} = 181nC$ at $V_{GS} = 10V$
- Low Miller Charge
- Low Q_{rr} Body Diode
- UIS Capability (Single Pulse and Repetitive Pulse)
- RoHs Compliant

Applications

- Powertrain Management
- Solenoid and Motor Drivers
- Electronic Steering
- Integrated Starter / Alernator
- Distributed Power Architectures and VRMs
- Primary Switch for 12V Systems

Units

$\textbf{MOSFET Maximum Ratings} \ \, \textbf{T}_{C} = 25^{\circ} \text{C unless otherwise noted}$

Symbol	Parameter	Ratings	Units
V_{DSS}	Drain to Source Voltage	40	V
V_{GS}	Gate to Source Voltage	±20	V
	Drain Current Continuous (T _C <158 °C, V _{GS} = 10V)	80	
I_D	Drain Current Continuous (T _{amb} = 25°C, V _{GS} = 10V, with R _{θJA} = 43°C/W)	28	Α
	Pulsed	See Figure 4	
E _{AS}	Single Pulse Avalanche Energy (Note 1	720	mJ
В	Power Dissipation	254	W
P_{D}	Derate above 25°C	1.7	W/°C
T_J , T_{STG}	Operating and Storage Temperature	-55 to +175	°C

Thermal Characteristics

F	$R_{ heta JC}$	Thermal Resistance Junction to Case	0.59	°C/W
F	$R_{\theta JA}$	Thermal Resistance Junction to Ambient TO-263, lin ² copper pad area	43	°C/W

Package Marking and Ordering Information

De	vice Marking	Device	Package	Reel Size	Tape Width	Quantity
	FDB8442	FDB8442	TO-263AB	330mm	24mm	800 units

Electrical Characteristics $T_J = 25$ °C unless otherwise noted

Parameter

Off Characteristics							
B _{VDSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_G$	iS = 0V	40	-	-	V
J. Zara Cata V	Zero Gate Voltage Drain Current	V _{DS} = 32V		-	-	1	^
IDSS	Zero Gate Voltage Drain Current	$V_{GS} = 0V$	$T_J = 150$ °C	-	-	250	μΑ
less	Gate to Source Leakage Current	$V_{GS} = \pm 20V$		_	-	±100	nA

Test Conditions

Min

Тур

Max

On Characteristics

Symbol

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	2	2.9	4	V
		I _D = 80A, V _{GS} = 10V	-	2.1	2.9	
r _{DS(on)}	Drain to Source On Resistance	$I_D = 80A, V_{GS} = 10V,$ $T_J = 175^{\circ}C$	-	3.6	5.0	mΩ

Dynamic Characteristics

C _{iss}	Input Capacitance	V _{DS} = 25V, V _{GS} = 0V,		-	12200	-	pF
C _{oss}	Output Capacitance			-	1040	-	pF
C _{rss}	Reverse Transfer Capacitance	1 - 111112		-	640	-	pF
R_G	Gate Resistance	$V_{GS} = 0.5V, f = 1N$	ИHz	-	1.0	-	Ω
$Q_{g(TOT)}$	Total Gate Charge at 10V	$V_{GS} = 0$ to 10V		-	181	235	nC
$Q_{g(TH)}$	Threshold Gate Charge	$V_{GS} = 0$ to $2V$	$V_{DD} = 20V$	-	23	30	nC
Q _{gs}	Gate to Source Gate Charge		I _D = 80A	-	49	-	nC
Q _{gs2}	Gate Charge Threshold to Plateau		$I_g = 1mA$	-	26	-	nC
Q_{gd}	Gate to Drain "Miller" Charge			-	41	-	nC

Electrical Characteristics T_J = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Switchi	ng Characteristics					
t _(on)	Turn-On Time		-	-	62	ns
t _{d(on)}	Turn-On Delay Time	V _{DD} = 20V, I _D = 80A	-	19.5	-	ns
t _r	Turn-On Rise Time		-	19.3	-	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10V, R_{GS} = 2\Omega$	-	57	-	ns
t _f	Turn-Off Fall Time		-	17.2	-	ns
t _{off}	Turn-Off Time		-	-	118	ns

Drain-Source Diode Characteristics

V	Source to Drain Diode Voltage	I _{SD} = 80A	DA - (0.9	1.25	V
V _{SD}	Source to Drain blode Voltage	I _{SD} = 40A	•	0.8	1.0	٧
t _{rr}	Reverse Recovery Time	I _F = 75A, di/dt = 100A/μs	-	49	64	ns
Q _{rr}	Reverse Recovery Charge	$I_F = 75A$, di/dt = 100A/ μ s	-	70	91	nC

Notes: 1: Starting $T_J = 25^{\circ}C$, L = 0.35mH, $I_{AS} = 64A$ 2: Pulse width = 100s.

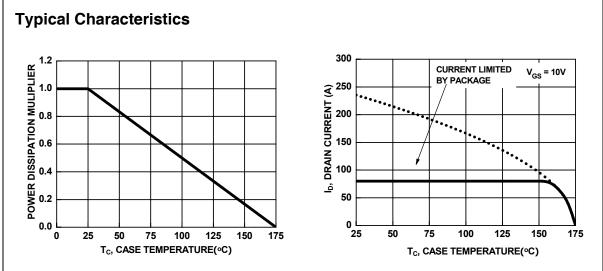


Figure 1. Normalized Power Dissipation vs Case Temperature

Figure 2. Maximum Continuous Drain Current vs Case Temperature

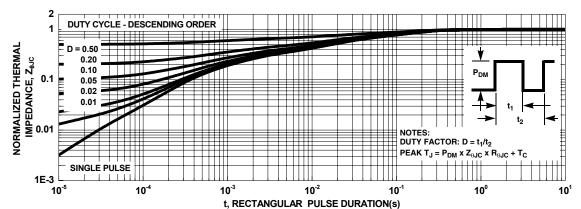


Figure 3. Normalized Maximum Transient Thermal Impedance

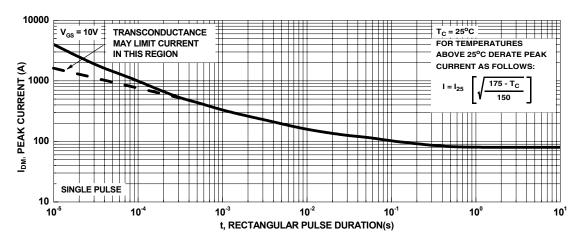


Figure 4. Peak Current Capability

Typical Characteristics

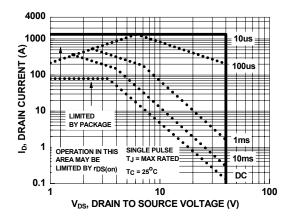
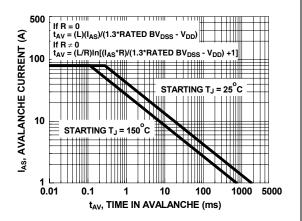



Figure 5. Forward Bias Safe Operating Area

NOTE: Refer to Fairchild Application Notes AN7514 and AN7515

Figure 6. Unclamped Inductive Switching

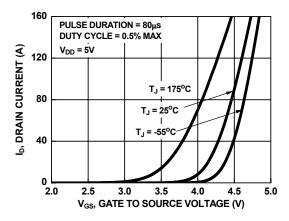


Figure 7. Transfer Characteristics

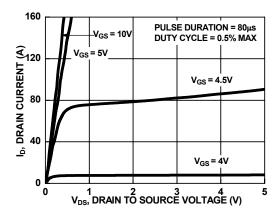


Figure 8. Saturation Characteristics

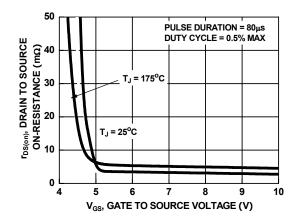


Figure 9. Drain to Source On-Resistance Variation vs Gate to Source Voltage

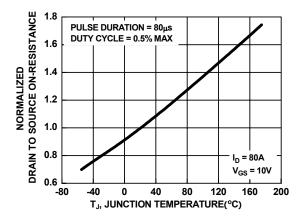


Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature

Typical Characteristics

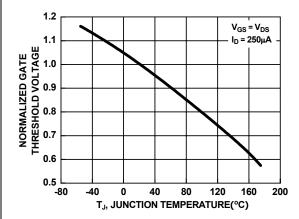


Figure 11. Normalized Gate Threshold Voltage vs
Junction Temperature

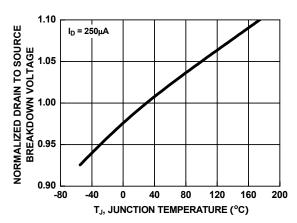


Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

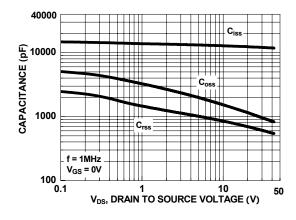


Figure 13. Capacitance vs Drain to Source Voltage

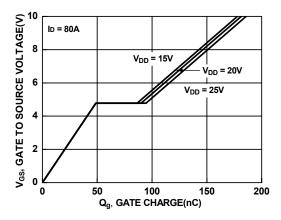


Figure 14. Gate Charge vs Gate to Source Voltage

UniFET™ $\mathsf{UltraFET}^{\circledR}$ VCX^{TM} Wire™

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT Quiet Series™	OCX™	SILENT SWITCHER
ActiveArray™	GlobalOptoisolator™	OCXPro™	SMART START™
Bottomless™	GTO™	OPTOLOGIC [®]	SPM™
Build it Now™	HiSeC™	OPTOPLANAR™	Stealth™
CoolFET™	I ² C™	PACMAN™	SuperFET™
CROSSVOLT™	i-Lo™	POP™	SuperSOT™-3
DOME™	ImpliedDisconnect™	Power247™	SuperSOT™-6
EcoSPARK™	IntelliMAX™	PowerEdge™	SuperSOT™-8
E ² CMOS™	ISOPLANAR™	PowerSaver™	SyncFET™
EnSigna™	LittleFET™	PowerTrench [®]	TCM™
FACT™	MICROCOUPLER™	QFET [®]	TinyBoost™
FAST [®]	MicroFET™	QS™	TinyBuck™
FASTr™	MicroPak™	QT Optoelectronics™	TinyPWM™
FPS™	MICROWIRE™	Quiet Series™	TinyPower™
FRFET™	MSX™	RapidConfigure™	TinyLogic [®]
	MSXPro™	RapidConnect™	TINYOPTO™
Across the board. Arc	_	µSerDes™	TruTranslation™
The Power Franchise	®	ScalarPump™	UHC™

DISCLAIMER

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

Programmable Active Droop™

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I20

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative