Preferred Device

1500 Watt Zener Transient Voltage Suppressors

Unidirectional*

These devices are designed to protect voltage sensitive components from high voltage, high-energy transients. They have excellent clamping capability, high surge capability, low zener impedance and fast response time. These devices are the Littelfuse exclusive, cost-effective, highly reliable axial leaded package and are ideally-suited for use in communication systems, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications, to protect CMOS, MOS and Bipolar integrated circuits.

Features

- Working Peak Reverse Voltage Range 5.0 V
- Peak Power 1500 Watts @ 1 ms
- Maximum Clamp Voltage @ Peak Pulse Current
- Low Leakage < 5 µA Above 10 V
- Response Time is Typically < 1 ns
- These are Pb-Free Devices*

Mechanical Characteristics

CASE: Void-free, transfer-molded, thermosetting plastic

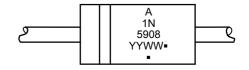
FINISH: All external surfaces are corrosion resistant and leads are

readily solderable

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES:

260°C, 1/16" from the case for 10 seconds **POLARITY:** Cathode indicated by polarity band

MOUNTING POSITION: Any


Littelfuse.com

CASE 41A
PLASTIC

MARKING DIAGRAM

A = Assembly Location 1N5908 = JEDEC Device Number

YY = Year WW = Work Week ■ Pb-Free Package

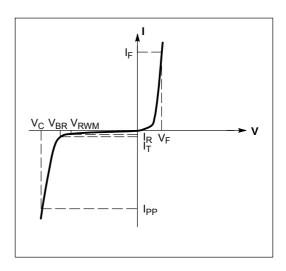
(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
1N5908G	Axial Lead (Pb-Free)	500 Units/Box
1N5908RL4G	Axial Lead (Pb-Free)	1500/Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Peak Power Dissipation (Note 1) @ T _L ≤ 25°C	P _{PK}	1500	W
Steady State Power Dissipation @ T₁ ≤ 75°C, Lead Length = 3/8"	P_{D}	5.0	W
Derated above T _L = 75°C		50	mW/°C
Thermal Resistance, Junction-to-Lead	$R_{ heta JL}$	20	°C/W
Forward Surge Current (Note 2) @ T _A = 25°C	I _{FSM}	200	Α
Operating and Storage Temperature Range	T _J , T _{stg}	- 65 to +175	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. Nonrepetitive current pulse per Figure 4 and derated above $T_A = 25^{\circ}$ C per Figure 2.
- 2. 1/2 sine wave (or equivalent square wave), PW = 8.3 ms, duty cycle = 4 pulses per minute maximum.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted, V_F = 3.5 V Max. @ I_F (Note 3) = 100 A)

Symbol	Parameter					
I _{PP}	Maximum Reverse Peak Pulse Current					
V _C	Clamping Voltage @ I _{PP}					
V _{RWM}	Working Peak Reverse Voltage					
I _R	Maximum Reverse Leakage Current @ V _{RWM}					
V _{BR}	Breakdown Voltage @ I _T					
I _T	Test Current					
I _F	Forward Current					
V _F	Forward Voltage @ I _F					

Uni-Directional TVS

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted, $V_F = 3.5 \text{ V Max.}$ @ I_F (Note 3) = 53 A)

	V _{RWM}			Breakdow	n Voltage	١	V	C (Volts) (Note 7)
Device	(Note 5)	I _R @ V _{RWM}	V _{BR} (Note 6) (Volts)		@ I _T				
(Note 4)	(Volts)	(μΑ)	Min	Nom	Max	(mA)	@ I _{PP} = 120 A	@ I _{PP} = 60 A	@ I _{PP} = 30 A
1N5908	5.0	300	6.0	-	-	1.0	8.5	8.0	7.6

- 3. Square waveform, PW = 8.3 ms, Non-repetitive duty cycle.
- 4. 1N5908 is JEDEC registered as a unidirectional device only (no bidirectional option)
- 5. A transient suppressor is normally selected according to the maximum working peak reverse voltage (V_{RWM}), which should be equal to or greater than the dc or continuous peak operating voltage level.

 6. V_{BR} measured at pulse test current I_T at an ambient temperature of 25°C and minimum voltages in V_{BR} are to be controlled.
- 7. Surge current waveform per Figure 4 and derate per Figure 2 of the General Data 1500 W at the beginning of this group

^{*}Bidirectional device will not be available in this device

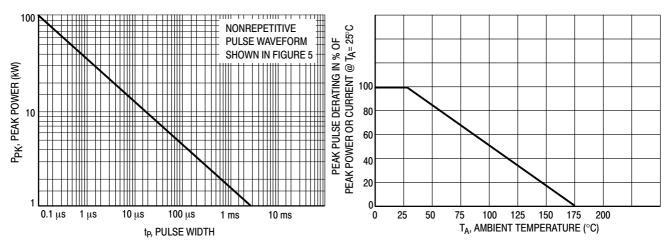


Figure 1. Pulse Rating Curve

Figure 2. Pulse Derating Curve

Figure 3. Steady State Power Derating

Figure 4. Pulse Waveform

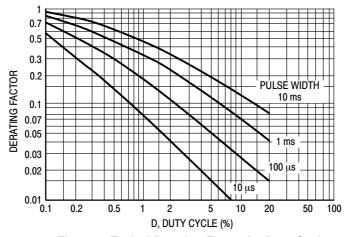


Figure 5. Typical Derating Factor for Duty Cycle

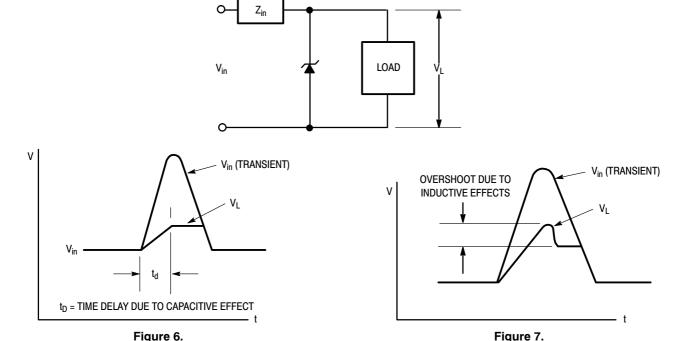
APPLICATION NOTES

RESPONSE TIME

In most applications, the transient suppressor device is placed in parallel with the equipment or component to be protected. In this situation, there is a time delay associated with the capacitance of the device and an overshoot condition associated with the inductance of the device and the inductance of the connection method. The capacitance effect is of minor importance in the parallel protection scheme because it only produces a time delay in the transition from the operating voltage to the clamp voltage as shown in Figure 6.

The inductive effects in the device are due to actual turn-on time (time required for the device to go from zero current to full current) and lead inductance. This inductive effect produces an overshoot in the voltage across the equipment or component being protected as shown in Figure 7. Minimizing this overshoot is very important in the application, since the main purpose for adding a transient suppressor is to clamp voltage spikes. These devices have excellent response time, typically in the picosecond range and negligible inductance. However, external inductive effects could produce unacceptable overshoot. Proper circuit layout, minimum lead lengths and

placing the suppressor device as close as possible to the equipment or components to be protected will minimize this overshoot.

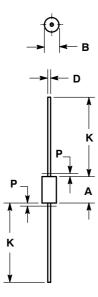

Some input impedance represented by Z_{in} is essential to prevent overstress of the protection device. This impedance should be as high as possible, without restricting the circuit operation.

DUTY CYCLE DERATING

The data of Figure 1 applies for non-repetitive conditions and at a lead temperature of 25°C. If the duty cycle increases, the peak power must be reduced as indicated by the curves of Figure 5. Average power must be derated as the lead or ambient temperature rises above 25°C. The average power derating curve normally given on data sheets may be normalized and used for this purpose.

At first glance the derating curves of Figure 5 appear to be in error as the 10 ms pulse has a higher derating factor than the $10~\mu s$ pulse. However, when the derating factor for a given pulse of Figure 5 is multiplied by the peak power value of Figure 1 for the same pulse, the results follow the expected trend.

TYPICAL PROTECTION CIRCUIT


CLIPPER BIDIRECTIONAL DEVICES

- Clipper-bidirectional devices are available in the 1.5KEXXA series and are designated with a "CA" suffix; for example, 1.5KE18CA.
- Clipper-bidirectional part numbers are tested in both directions to electrical parameters in preceding table (except for V_F which does not apply).
- 3. The 1N6267A through 1N6303A series are JEDEC registered devices and the registration does not include a "CA" suffix. To order clipper-bidirectional devices one must add CA to the 1.5KE device title.

1N5908

PACKAGE DIMENSIONS

CASE 41A-04 ISSUE D

NOTES:

- IOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
 Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. LEAD FINISH AND DIAMETER UNCONTROLLED
- IN DIMENSION P.
 4. 041A-01 THRU 041A-03 OBSOLETE, NEW
- STANDARD 041A-04.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.335	0.374	8.50	9.50	
В	0.189	0.209	4.80	5.30	
D	0.038	0.042	0.96	1.06	
K	1.000		25.40		
Р		0.050		1.27	

Littelfuse products are not designed for, and shall not be used for, any purpose (including, without limitation, automotive, military, aerospace, medical, life-saving, life-sustaining or nuclear facility applications, devices intended for surgical implant into the body, or any other application in which the failure or lack of desired operation of the product may result in personal injury, death, or property damage) other than those expressly set forth in applicable Littelfuse product documentation. Warranties granted by Littelfuse shall be deemed void for products used for any purpose not expressly set forth in applicable Littelfuse documentation. Littelfuse shall not be liable for any claims or damages arising out of products used in applications not expressly intended by Littelfuse as set forth in applicable Littelfuse documentation. The sale and use of Littelfuse products is subject to Littelfuse Terms and Conditions of Sale, unless otherwise agreed by Littelfuse.

Littelfuse.com