

140 COMMERCE DRIVE MONTGOMERYVILLE, PA 18936-1013

PHONE: (215) 631-9840 FAX: (215) 631-9855

MS2422

RF & MICROWAVE TRANSISTORS AVIONICS APPLICATIONS

Features

- DESIGNED FOR HIGH POWER PULSED IFF, DME, AND TACAN APPLICATIONS
- 350 W (typ.) IFF 1030 1090 MHz
- 300 W (min.) DME 1025 1150 MHz
- 290 W (typ.) TACAN 960 1215 MHz
- 960 1215 MHz
- GOLD METALLIZATION
- P_{OUT} = 300W MINIMUM
- $G_P = 6.3 \text{ dB MINIMUM}$
- INFINITE VSWR CAPABILITY @ RATED CONDITIONS
- EMITTER BALLASTED
- COMMON BASE

DESCRIPTION:

The MS2422 is a gold metallized silicon, NPN power transistor designed for applications requiring high peak power and low duty cycles such as IFF, DME, and TACAN. The MS2422 is designed with internal input/output matching resulting in improved broadband performance and low thermal resistance.

ABSOLUTE MAXIMUM RATINGS (Tcase = 25^{\circ}C)

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage	65	V
V _{CES}	Collector-Emitter Voltage	65	V
V _{EBO}	Emitter-Base Voltage	3.5	V
I _C	Device Current	22	Α
P _{DISS}	Power Dissipation	875	W
TJ	Junction Temperature	200	°C
T _{STG}	Storage Temperature	-65 to +150	°C

Thermal Data

R _{TH(J-C)} Junction-case Thermal Resistance	0.20	°C/W
---	------	------

MS2422

ELECTRICAL SPECIFICATIONS (Tcase = 25°C) STATIC

Symbol		Test Conditions		Value Min. Typ. Max.		Unit
		rest Conditions	Min.		Offic	
BV _{CBO}	I _C = 10 mA	I _E = 0 mA	65			V
BV _{CES}	I _C = 25 mA	$V_{BE} = 0 V$	65			V
BV_{EBO}	I _E = 5.0 mA	$I_C = 0 \text{ mA}$	3.5			V
I _{CES}	V _{CE} = 50 V	I _E = 0 mA			25	mA
h _{FE}	V _{CE} = 5 V	I _C = 1A	10			mA

DYNAMIC

Symbol	Test Conditions		Value			Unit
Syllibol			Min.	Тур.	Max.	
P _{out}	f = 1025 - 1150 MHz P _{IN} = 70W	V _{CE} = 50V	300			W
G _P	f = 1025 - 1150 MHz P _{IN} = 70W	V _{CE} = 50V	6.3			dB
ης	f = 1025 - 1150 MHz P _{IN} = 70W	V _{CE} = 50V	35			%
Conditions	Pulse Width = 10 μs Duty Cycle = 1%					

IMPEDANCE DATA

FREQ	$Z_{IN}(\Omega)$	$Z_{\mathtt{CL}}\!\left(\Omega ight)$
960 MHz	5.1 + j1.0	2.2 – j3.5
1090 MHz	4.2 + j0.5	2.5 – j3.5
1215 MHz	7.5 + j1.5	2.3 – j1.5

Pin = 70W Vce = 50V

TYPICAL PERFORMANCE

POWER OUTPUT vs POWER INPUT

POWER OUTPUT vs FREQUENCY

EFFICIENCY vs POWER INPUT

EFFICIENCY vs FREQUENCY

TEST CIRCUIT

Teflon Fiberglass $\mathcal{E}_{f} = 2.5$ THK .031

All Dimension are in Inches

C1,C2.	Z1	: .404 x .075
C3, C4: .6 - 4.5pF JOHANSON Gigatrim	Z2	: .263 x .995
C5 : 1000μF, 63V, Electrolytic	Z3	: .483 x .077
C6 : 100pF Chip Capacitor Across .090 Gap	Z 4	: .350 x 1.203
	75	

L1 : 2 Turns #24 .12 I.D., Spaced Wire Diameter
L2 : 4 Turns #24, .07 I.D., Spaced Wire Diameter
L2 : 3 Turns #24, .07 I.D., Spaced Wire Diameter
L2 : 3 Turns #24, .07 I.D., Spaced Wire Diameter
L3 : .505 x 1.200 with Two Notches .05 Long
By .068 Wide
.335 x .076

Z6 : .335 x .076 Z7 : .260 x .442 Z8 : .310 x .082

PACKAGE MECHANICAL DATA

PACKAGE STYLE M138

