

P-CHANNEL MOSFET

Qualified per MIL-PRF-19500/564

Qualified Levels: JAN, JANTX, JANTXV and JANS

DESCRIPTION

This 2N6849U switching transistor is military qualified up to the JANS level for high-reliability applications. This device is also available in a thru hole TO-205AF package. Microsemi also offers numerous other transistor products to meet higher and lower power ratings with various switching speed requirements in both through-hole and surface-mount packages.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- Surface mount equivalent of JEDEC registered 2N6849 number.
- JAN, JANTX, JANTXV and JANS qualifications are available per MIL-PRF-19500/564.
 (See part nomenclature for all available options.)
- RoHS compliant by design.

U-18 LCC Package

Also available in:

TO-205AF (TO-39) package (Leaded Top Hat) 2N6849

APPLICATIONS / BENEFITS

- Low profile surface mount for crowded areas.
- Military and other high-reliability applications.

MAXIMUM RATINGS @ T_A = +25 °C unless otherwise stated

Parameters / Test Cond	Symbol	Value	Unit	
Operating & Storage Junction Temperature Range		T_J & T_{stg}	-55 to +150	°C
Thermal Resistance Junction-to-Case		$R_{\Theta JC}$	5.0	°C/W
Total Power Dissipation	@ T _A = +25 °C	Р⊤	0.8	W
	@ $T_C = +25 ^{\circ}C^{(1)}$	гт	25	VV
Drain-Source Voltage, dc		V_{DS}	-100	V
Gate-Source Voltage, dc		V_{GS}	± 20	V
Drain Current, dc @ T _C = +25 °C (2)		I _{D1}	-6.5	Α
Drain Current, dc @ T _C = +100 °C (2)		I_{D2}	-4.1	Α
Off-State Current (Peak Total Value) (3	3)	I_{DM}	-25	A (pk)
Source Current		Is	-6.5	Α

Notes: 1. Derate linearly 0.2 W/ $^{\circ}$ C for T_C > +25 $^{\circ}$ C.

2. The following formula derives the maximum theoretical I_D limit. I_D is also limited by package and internal wires and may be limited due to pin diameter.

$$I_D = \sqrt{\frac{T_J (max) - T_C}{R_{\theta JC} x R_{DS(on)} @ T_J (max)}}$$

3. $I_{DM} = 4 \times I_{D1}$ as calculated in note 2.

MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Ceramic LCC-18 with kovar gold plated lid.
- TERMINALS: Gold plating over nickel.
- MARKING: Manufacturer's ID, part number, date code, ESD symbol at pin 1 location.
- TAPE & REEL option: Standard per EIA-481-D. Consult factory for quantities.
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

	SYMBOLS & DEFINITIONS				
Symbol	Definition				
di/dt	Rate of change of diode current while in reverse-recovery mode, recorded as maximum value.				
I _F	Forward current				
R_{G}	Gate drive impedance				
V_{DD}	Drain supply voltage				
V _{DS}	Drain source voltage, dc				
V _{GS}	Gate source voltage, dc				

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS	·			
Drain-Source Breakdown Voltage V _{GS} = 0 V, I _D = -1.0 mA	$V_{(BR)DSS}$	-100		V
Gate-Source Voltage (Threshold) $V_{DS} \ge V_{GS}$, $I_D = -0.25$ mA $V_{DS} \ge V_{GS}$, $I_D = -0.25$ mA, $T_J = +125$ °C $V_{DS} \ge V_{GS}$, $I_D = -0.25$ mA, $T_J = -55$ °C	V _{GS(th)1} V _{GS(th)2} V _{GS(th)3}	-2.0 -1.0	-4.0 -5.0	V
Gate Current $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}, T_{J} = +125 ^{\circ}\text{C}$	I _{GSS1}		±100 ±200	nA
Drain Current $V_{GS} = 0 \text{ V}, V_{DS} = -80 \text{ V}$	I _{DSS1}		-25	μΑ
Drain Current $V_{GS} = 0 \text{ V}, V_{DS} = -80 \text{ V}, T_{J} = +125 \text{ °C}$	I _{DSS2}		-0.25	mA
Static Drain-Source On-State Resistance V _{GS} = -10 V, I _D = -4.1 A pulsed	r _{DS(on)1}		0.30	Ω
Static Drain-Source On-State Resistance V _{GS} = -10 V, I _D = -6.5 A pulsed	r _{DS(on)2}		0.32	Ω
Static Drain-Source On-State Resistance $T_J = +125$ °C $V_{GS} = -10$ V, $I_D = -4.1$ A pulsed	r _{DS(on)3}		0.54	Ω
Diode Forward Voltage V _{GS} = 0 V, I _D = -6.5 A pulsed	V _{SD}		-4.3	V

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Gate Charge:				
On-State Gate Charge V_{GS} = -10 V, I_D = -6.5 A, V_{DS} = -50 V	$Q_{g(on)}$		34.8	nC
Gate to Source Charge $V_{GS} = -10 \text{ V}, I_D = -6.5 \text{ A}, V_{DS} = -50 \text{ V}$	Q _{gs}		6.8	nC
Gate to Drain Charge $V_{GS} = -10 \text{ V}, I_D = -6.5 \text{ A}, V_{DS} = -50 \text{ V}$	Q_{gd}		23.1	nC

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted (continued)

SWITCHING CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Turn-on delay time				
I_D = -6.5 A, V_{GS} = -10 V, R_G = 7.5 Ω , V_{DD} = -40 V	t _{d(on)}		60	ns
Rinse time $I_D = -6.5$ A, $V_{GS} = -10$ V, $R_G = 7.5$ Ω , $V_{DD} = -40$ V	tr		140	ns
Turn-off delay time $I_D = -6.5 \text{ A}, V_{GS} = -10 \text{ V}, R_G = 7.5 \Omega, V_{DD} = -40 \text{ V}$	t _{d(off)}		140	ns
Fall time I_D = -6.5 A, V_{GS} = -10 V, R_G = 7.5 Ω , V_{DD} = -40 V	t _f		140	ns
Diode Reverse Recovery Time di/dt \leq -100 A/ μ s, V _{DD} \leq -50 V, I _F = -6.5 A	t _{rr}		250	ns

GRAPHS

FIGURE 1 - Normalized Transient Thermal Impedance

FIGURE 2 - Maximum Drain Current vs Case Temperature

GRAPHS (continued)

FIGURE 3 - Maximum Safe Operating Area

PACKAGE DIMENSIONS

-C-

LW

-CH-

0.08 (.003)

	Dimensions				
Ltr	Inches		Millimeters		
	Min	Max	Min	Max	
BL	.345	.360	8.77	9.14	
BW	.280	.295	7.12	7.49	
СН	.095	.115	2.42	2.92	
LL1	.040	.055	1.02	1.39	
LL2	.055	.065	1.40	1.65	
LS	.050 BSC		1.27 BSC		
LS1	.025 BSC		0.635 BSC		
LS2	.008 BSC		0.203 BSC		
LW	.020	.030	0.51	0.76	
Q1	.105 REF		2.67 REF		
Q2	.120 REF		3.05 REF		
Q3	.045	.055	1.14	1.40	
TL	.070	.080	1.78	2.03	
TW	.120	.130	3.05	3.30	

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.
- 4. Ceramic package only.

PAD LAYOUT

PAD ASSIGNMENTS