P-CHANNEL MOSFET Qualified per MIL-PRF-19500/564 Qualified Levels: JAN, JANTX, JANTXV and JANS #### **DESCRIPTION** This 2N6849U switching transistor is military qualified up to the JANS level for high-reliability applications. This device is also available in a thru hole TO-205AF package. Microsemi also offers numerous other transistor products to meet higher and lower power ratings with various switching speed requirements in both through-hole and surface-mount packages. Important: For the latest information, visit our website http://www.microsemi.com. #### **FEATURES** - Surface mount equivalent of JEDEC registered 2N6849 number. - JAN, JANTX, JANTXV and JANS qualifications are available per MIL-PRF-19500/564. (See part nomenclature for all available options.) - RoHS compliant by design. U-18 LCC Package #### Also available in: TO-205AF (TO-39) package (Leaded Top Hat) 2N6849 #### **APPLICATIONS / BENEFITS** - Low profile surface mount for crowded areas. - Military and other high-reliability applications. ### MAXIMUM RATINGS @ T_A = +25 °C unless otherwise stated | Parameters / Test Cond | Symbol | Value | Unit | | |--|--------------------------------|-------------------|-------------|--------| | Operating & Storage Junction Temperature Range | | T_J & T_{stg} | -55 to +150 | °C | | Thermal Resistance Junction-to-Case | | $R_{\Theta JC}$ | 5.0 | °C/W | | Total Power Dissipation | @ T _A = +25 °C | Р⊤ | 0.8 | W | | | @ $T_C = +25 ^{\circ}C^{(1)}$ | гт | 25 | VV | | Drain-Source Voltage, dc | | V_{DS} | -100 | V | | Gate-Source Voltage, dc | | V_{GS} | ± 20 | V | | Drain Current, dc @ T _C = +25 °C (2) | | I _{D1} | -6.5 | Α | | Drain Current, dc @ T _C = +100 °C (2) | | I_{D2} | -4.1 | Α | | Off-State Current (Peak Total Value) (3 | 3) | I_{DM} | -25 | A (pk) | | Source Current | | Is | -6.5 | Α | **Notes:** 1. Derate linearly 0.2 W/ $^{\circ}$ C for T_C > +25 $^{\circ}$ C. 2. The following formula derives the maximum theoretical I_D limit. I_D is also limited by package and internal wires and may be limited due to pin diameter. $$I_D = \sqrt{\frac{T_J (max) - T_C}{R_{\theta JC} x R_{DS(on)} @ T_J (max)}}$$ 3. $I_{DM} = 4 \times I_{D1}$ as calculated in note 2. #### MSC - Lawrence 6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803 #### MSC - Ireland Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298 #### Website: www.microsemi.com ### **MECHANICAL and PACKAGING** - CASE: Ceramic LCC-18 with kovar gold plated lid. - TERMINALS: Gold plating over nickel. - MARKING: Manufacturer's ID, part number, date code, ESD symbol at pin 1 location. - TAPE & REEL option: Standard per EIA-481-D. Consult factory for quantities. - See <u>Package Dimensions</u> on last page. #### **PART NOMENCLATURE** | | SYMBOLS & DEFINITIONS | | | | | |-----------------|--|--|--|--|--| | Symbol | Definition | | | | | | di/dt | Rate of change of diode current while in reverse-recovery mode, recorded as maximum value. | | | | | | I _F | Forward current | | | | | | R_{G} | Gate drive impedance | | | | | | V_{DD} | Drain supply voltage | | | | | | V _{DS} | Drain source voltage, dc | | | | | | V _{GS} | Gate source voltage, dc | | | | | # **ELECTRICAL CHARACTERISTICS** @ T_A = +25 °C, unless otherwise noted | Parameters / Test Conditions | Symbol | Min. | Max. | Unit | |---|--|--------------|--------------|------| | OFF CHARACTERISTICS | · | | | | | Drain-Source Breakdown Voltage V _{GS} = 0 V, I _D = -1.0 mA | $V_{(BR)DSS}$ | -100 | | V | | Gate-Source Voltage (Threshold) $V_{DS} \ge V_{GS}$, $I_D = -0.25$ mA $V_{DS} \ge V_{GS}$, $I_D = -0.25$ mA, $T_J = +125$ °C $V_{DS} \ge V_{GS}$, $I_D = -0.25$ mA, $T_J = -55$ °C | V _{GS(th)1}
V _{GS(th)2}
V _{GS(th)3} | -2.0
-1.0 | -4.0
-5.0 | V | | Gate Current $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}, T_{J} = +125 ^{\circ}\text{C}$ | I _{GSS1} | | ±100
±200 | nA | | Drain Current $V_{GS} = 0 \text{ V}, V_{DS} = -80 \text{ V}$ | I _{DSS1} | | -25 | μΑ | | Drain Current $V_{GS} = 0 \text{ V}, V_{DS} = -80 \text{ V}, T_{J} = +125 \text{ °C}$ | I _{DSS2} | | -0.25 | mA | | Static Drain-Source On-State Resistance V _{GS} = -10 V, I _D = -4.1 A pulsed | r _{DS(on)1} | | 0.30 | Ω | | Static Drain-Source On-State Resistance V _{GS} = -10 V, I _D = -6.5 A pulsed | r _{DS(on)2} | | 0.32 | Ω | | Static Drain-Source On-State Resistance $T_J = +125$ °C $V_{GS} = -10$ V, $I_D = -4.1$ A pulsed | r _{DS(on)3} | | 0.54 | Ω | | Diode Forward Voltage
V _{GS} = 0 V, I _D = -6.5 A pulsed | V _{SD} | | -4.3 | V | ## **DYNAMIC CHARACTERISTICS** | Parameters / Test Conditions | Symbol | Min. | Max. | Unit | |--|-----------------|------|------|------| | Gate Charge: | | | | | | On-State Gate Charge V_{GS} = -10 V, I_D = -6.5 A, V_{DS} = -50 V | $Q_{g(on)}$ | | 34.8 | nC | | Gate to Source Charge $V_{GS} = -10 \text{ V}, I_D = -6.5 \text{ A}, V_{DS} = -50 \text{ V}$ | Q _{gs} | | 6.8 | nC | | Gate to Drain Charge $V_{GS} = -10 \text{ V}, I_D = -6.5 \text{ A}, V_{DS} = -50 \text{ V}$ | Q_{gd} | | 23.1 | nC | # **ELECTRICAL CHARACTERISTICS** @ T_A = +25 °C, unless otherwise noted (continued) ## **SWITCHING CHARACTERISTICS** | Parameters / Test Conditions | Symbol | Min. | Max. | Unit | |---|---------------------|------|------|------| | Turn-on delay time | | | | | | I_D = -6.5 A, V_{GS} = -10 V, R_G = 7.5 Ω , V_{DD} = -40 V | t _{d(on)} | | 60 | ns | | Rinse time $I_D = -6.5$ A, $V_{GS} = -10$ V, $R_G = 7.5$ Ω , $V_{DD} = -40$ V | tr | | 140 | ns | | Turn-off delay time $I_D = -6.5 \text{ A}, V_{GS} = -10 \text{ V}, R_G = 7.5 \Omega, V_{DD} = -40 \text{ V}$ | t _{d(off)} | | 140 | ns | | Fall time I_D = -6.5 A, V_{GS} = -10 V, R_G = 7.5 Ω , V_{DD} = -40 V | t _f | | 140 | ns | | Diode Reverse Recovery Time di/dt \leq -100 A/ μ s, V _{DD} \leq -50 V, I _F = -6.5 A | t _{rr} | | 250 | ns | ## **GRAPHS** FIGURE 1 - Normalized Transient Thermal Impedance FIGURE 2 - Maximum Drain Current vs Case Temperature ## **GRAPHS** (continued) FIGURE 3 - Maximum Safe Operating Area ## **PACKAGE DIMENSIONS** -C- LW -CH- 0.08 (.003) | | Dimensions | | | | | |-----|------------|------|-------------|------|--| | Ltr | Inches | | Millimeters | | | | | Min | Max | Min | Max | | | BL | .345 | .360 | 8.77 | 9.14 | | | BW | .280 | .295 | 7.12 | 7.49 | | | СН | .095 | .115 | 2.42 | 2.92 | | | LL1 | .040 | .055 | 1.02 | 1.39 | | | LL2 | .055 | .065 | 1.40 | 1.65 | | | LS | .050 BSC | | 1.27 BSC | | | | LS1 | .025 BSC | | 0.635 BSC | | | | LS2 | .008 BSC | | 0.203 BSC | | | | LW | .020 | .030 | 0.51 | 0.76 | | | Q1 | .105 REF | | 2.67 REF | | | | Q2 | .120 REF | | 3.05 REF | | | | Q3 | .045 | .055 | 1.14 | 1.40 | | | TL | .070 | .080 | 1.78 | 2.03 | | | TW | .120 | .130 | 3.05 | 3.30 | | #### NOTES: - 1. Dimensions are in inches. - 2. Millimeters are given for general information only. - 3. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology. - 4. Ceramic package only. # PAD LAYOUT **PAD ASSIGNMENTS**