

CMOS LSI

Two-Channel Electronic Volume Control System

http://onsemi.com

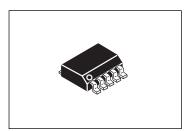
Overview

The LC75344MD is a two-channel electronic volume control IC that is controlled by data input over a serial interface.

Functions

• Volume control: 0 dB to −50 dB in 1 dB steps, −52 dB to −78 dB in 2 dB steps, and −∞, for a total of 66 positions. A balance function can be implemented by controlling the left and right channels independently.

Features


- Built-in buffer amplifiers minimize the number of external components required.
- Fabricated in a silicon gate CMOS process to minimize the switching noise generated by internal switches.
- Built-in reference voltage generation circuit for the analog ground level.
- All settings are controlled by data input over a serial interface that conforms to the CCB specifications.

Specifications

Absolute Maximum Ratings at Ta = 25°C, $V_{SS} = 0V$

Parameter	Symbol	Conditions	Ratings	unit
Maximum supply voltage	V _{DD} max	V _{DD}	11	V
Lead allows		CE, CL, DI	-0.3 to +11.0	.,
Input voltage	V _{IN} max	LIN, RIN	V _{SS} –0.3 to V _{DD} +0.3	V
O to to allow	V _{OUT} 1	OSC	–0.3 to V _{DD} +0.3	.,
Output voltage	V _{OUT} 2	S1 to S87, COM1 to COM4, P1 to P8	-0.3 to V _{LCD} +0.3	V
Allowable power dissipation	Pd max	Ta ≤ 75°C *1: When mounted on a PCB.	300	mW
Operating temperature	Topr		-30 to +75	°C
Storage temperature	Tstg		-40 to +125	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

SOIC-10 NB

- CCB is ON Semiconductor® 's original format. All addresses are managed by ON Semiconductor® for this format.
- CCB is a registered trademark of Semiconductor Components Industries, LLC.

ORDERING INFORMATION

See detailed ordering and shipping information on page 13 of this data sheet.

Allowable Operating Ranges at Ta = -30 to +75°C, $V_{SS} = 0V$

Danamatan	O. made ad	Pin Name	On a dikin an		11-44		
Parameter	Symbol	DOI FIII Name Conditions	Conditions	min	typ	max	Unit
Supply voltage	V _{DD}	V _{DD}		4.5		10	>
High-level input voltage	V _{IH}	CL, DI, CE		2.0		10	٧
La la altra francis	.,	CL, DI, CE	7.5 ≤ V _{DD} ≤ 10	V _{SS}		0.8	V
Low-level input voltage	V _{IL}	CL, DI, CE	4.5 ≤ V _{DD} ≤ 7.5	V _{SS}		0.3	V
Input voltage amplitude	V _{IN}	LIN, RIN		V_{SS}		V_{DD}	Vp-p
Input pulse width	tøW	CL		1			μS
Setup time	tsetup	CL, DI, CE		1			μS
Hold time	thold	CL, DI, CE		1			μS
Operating frequency	fopg	CL				500	kHz

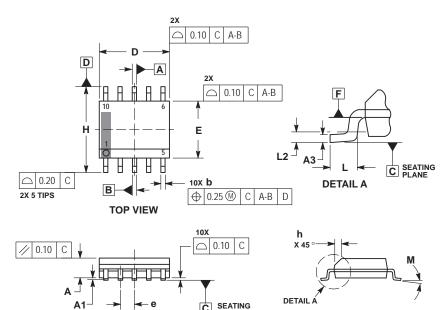
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Electrical Characterristics at Ta = 25°C, $V_{DD} = 9V$, $V_{SS} = 0V$

Desembles	Cumbal	Pin Name	Conditions		Ratings		Lloit
Parameter	Symbol	Pin Name	Conditions	min	typ	max	Unit
Input resistance	Rin	LIN, RIN			50		kΩ

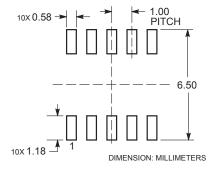
Overall Characteristics

Parameter	Cumbal	Symbol Conditions		Ratings			
Parameter	Symbol	Conditions	min	typ	max	Unit	
Total barragia distantian	TUD	VIN = 1 Vrms, f = 1 kHz With all settings flat overall		0.002	0.01	%	
Total harmonic distortion	THD	VIN = 1 Vrms, f = 20 kHz With all settings flat overall		0.003		%	
Crosstalk	СТ	VIN = 1 Vrms, f = 1 kHz, Rg = 1 k Ω With all settings flat overall	90			dB	
Output noise voltage	V _N	80 kHz L.P.F, Rg = 1 kΩ With all settings flat overall		6.0		μV	
Maximum attenuation	Vomin	VIN = 1 Vrms, f = 1 kHz With all settings flat overall		-92		dB	
Current drain	IDD	VDD – VSS = +9 V		12		mA	
High-level input current	lін	CL, DI, CE: VIN = 10 V, VDD = 10 V			10	μА	
Low-level input current	lıL	CL, DI, CE: VIN = 0 V, VDD = 10 V	-10			μА	


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

END VIEW

Package Dimensions


unit: mm

SOIC-10 NB CASE 751BQ **ISSUE B**

RECOMMENDED SOLDERING FOOTPRINT*

SIDE VIEW

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

- NOTES:

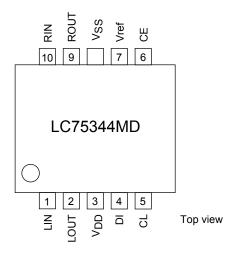
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.10mm TOTAL IN EXCESS OF 'b' AT MAXIMUM MATERIAL CONDITION.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15mm PER SIDE. DIMENSIONS D AND E ARE DETERMINED AT DATUM F.
 5. DIMENSIONS A AND B ARE TO BE DETERMINED AT DATUM F.
 6. A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

	MILLIN	IETERS
DIM	MIN	MAX
Α	1.25	1.75
A1	0.10	0.25
A3	0.17	0.25
b	0.31	0.51
D	4.80	5.00
E	3.80	4.00
е	1.00) BSC
Н	5.80	6.20
h	0.37	7 REF
L	0.40	0.80
L2		BSC
M	0°	8°

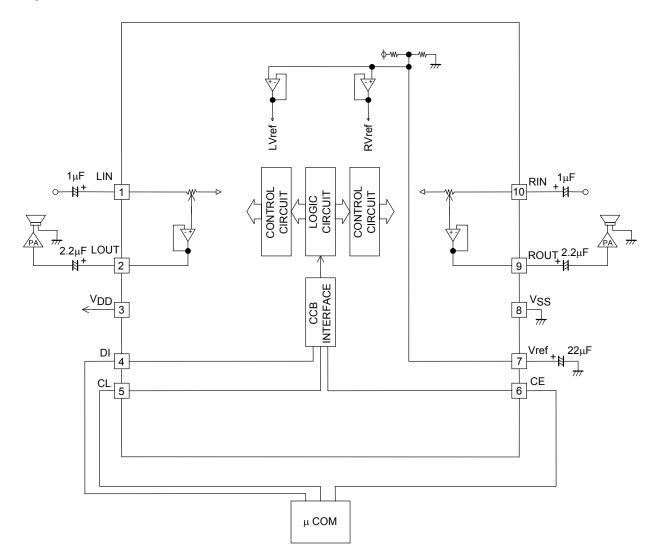
GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code

= Assembly Location Α

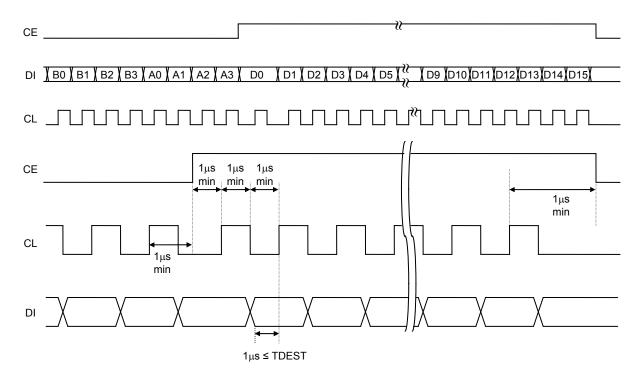

= Wafer Lot = Year

= Work Week W


= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present.

Pin Arrangement



Equivalent Circuit

Control System Timing and Data Format

The LC75344MD is controlled by inputting the stipulated data serially to the CL, DI, and CE pins. The data consists of a total of 24 bits, of which 8 bits are the address and 16 bits are the data.

• Address Code (B0 to A3)

The data has an 8-bit address field, and conforms to the CCB serial bus specifications.

Address code	В0	B1	B2	В3	A0	A1	A2	A3	
(LSB)	0	0	0	1	0	0	0	1	(88HEX)

• Control Code Allocations Volume control

D0	D1	D2	D3	D4	D5	D6	D7	Operation
0	0	0	0	0	0	0	0	0dB
1	0	0	0	0	0	0	0	-1dB
0	1	0	0	0	0	0	0	-2dB
1	1	0	0	0	0	0	0	-3dB
0	0	1	0	0	0	0	0	–4dB
1	0	1	0	0	0	0	0	-5dB
0	1	1	0	0	0	0	0	-6dB
1	1	1	0	0	0	0	0	-7dB
0	0	0	1	0	0	0	0	-8dB
1	0	0	1	0	0	0	0	-9dB
0	1	0	1	0	0	0	0	-10dB
1	1	0	1	0	0	0	0	-11dB
0	0	1	1	0	0	0	0	-12dB
1	0	1	1	0	0	0	0	-13dB
0	1	1	1	0	0	0	0	-14dB
1	1	1	1	0	0	0	0	-15dB
0	0	0	0	1	0	0	0	-16dB
1	0	0	0	1	0	0	0	-17dB
0	1	0	0	1	0	0	0	-18dB
1	1	0	0	1	0	0	0	-19dB
0	0	1	0	1	0	0	0	-20dB
1	0	1	0	1	0	0	0	–21dB
0	1	1	0	1	0	0	0	-22dB
1	1	1	0	1	0	0	0	-23dB
0	0	0	1	1	0	0	0	-24dB
1	0	0	1	1	0	0	0	-25dB
0	1	0	1	1	0	0	0	-26dB
1	1	0	1	1	0	0	0	-27dB
0	0	1	1	1	0	0	0	-28dB
1	0	1	1	1	0	0	0	-29dB
0	1	1	1	1	0	0	0	-30dB
1	1	1	1	1	0	0	0	-31dB
0	0	0	0	0	1	0	0	-32dB
1	0	0	0	0	1	0	0	-33dB
0	1	0	0	0	1	0	0	-34dB
1	1	0	0	0	1	0	0	-35dB
0	0	1	0	0	1	0	0	-36dB
1	0	1	0	0	1	0	0	-37dB
0	1	1	0	0	1	0	0	-38dB
1	1	1	0	0	1	0	0	-39dB
0	0	0	1	0	1	0	0	-40dB

Continued on next page.

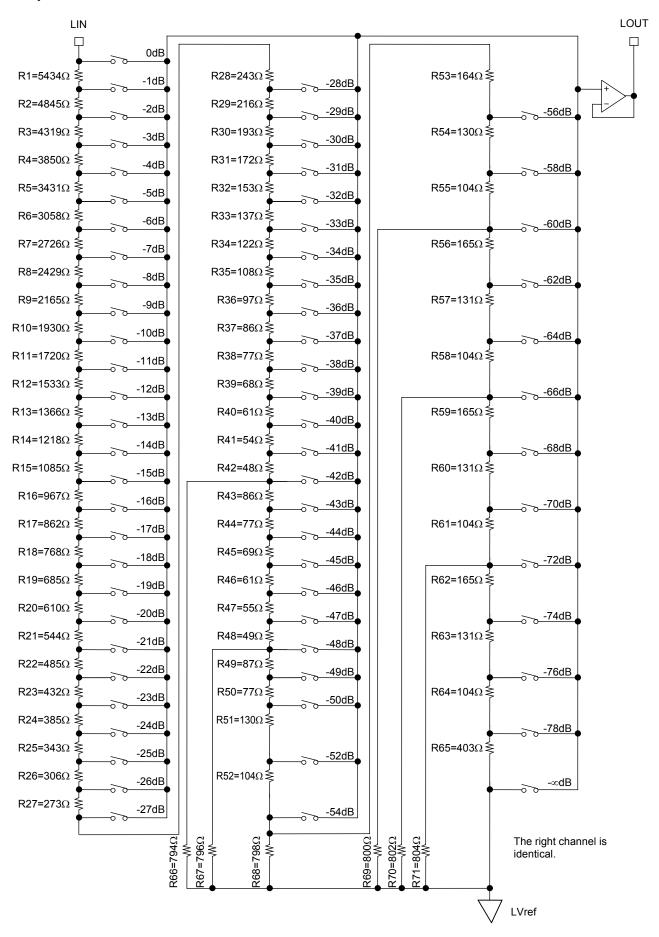
Continued from preceding page.

Volume control

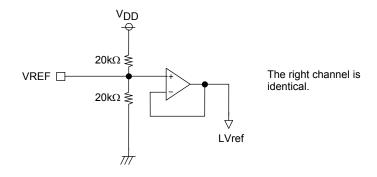
D0	D1	D2	D3	D4	D5	D6	D7	Operation
1	0	0	1	0	1	0	0	-41dB
0	1	0	1	0	1	0	0	-42dB
1	1	0	1	0	1	0	0	-43dB
0	0	1	1	0	1	0	0	-44dB
1	0	1	1	0	1	0	0	-45dB
0	1	1	1	0	1	0	0	-46dB
1	1	1	1	0	1	0	0	-47dB
0	0	0	0	1	1	0	0	-48dB
1	0	0	0	1	1	0	0	-49dB
0	1	0	0	1	1	0	0	-50dB
0	0	1	0	1	1	0	0	-52dB
0	1	1	0	1	1	0	0	-54dB
0	0	0	1	1	1	0	0	-56dB
0	1	0	1	1	1	0	0	-58dB
0	0	1	1	1	1	0	0	-60dB
0	1	1	1	1	1	0	0	-62dB
0	0	0	0	0	0	1	0	-64dB
0	1	0	0	0	0	1	0	-66dB
0	0	1	0	0	0	1	0	-68dB
0	1	1	0	0	0	1	0	-70dB
0	0	0	1	0	0	1	0	-72dB
0	1	0	1	0	0	1	0	-74dB
0	0	1	1	0	0	1	0	-76dB
0	1	1	1	0	0	1	0	-78dB
0	0	0	0	1	0	1	0	-∞

Channel selection

D8	D9	Operation			
0	0	Normally not used			
1	0	RCH			
0	1	LCH			
1	1	Left and right channels together			

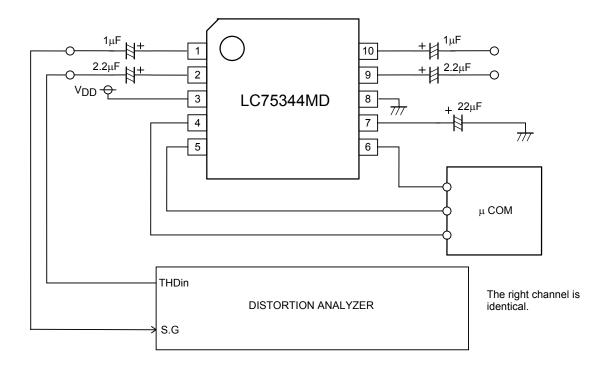

Test mode

D10	D11	D12	D13	D14	D15	Operation		
0	0	0	0	0	0			
These bi	These bits specify the IC test mode. They must be set to zero for normal operation.							

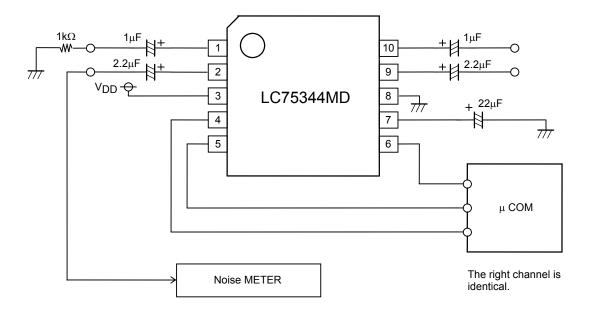

Pin Functions

Pin name	Pin No.	Function	Notes
LIN RIN	1 10	Volume control inputs	VDD VRIN
LOUT ROUT	2 9	Volume control outputs	V _{DD} OUT
Vref	7	VDD × 0.5 voltage generator block for the analog ground level. A capacitor with a value a few times 10 μF must be inserted between Vref and AVSS (VSS) to minimize power supply ripple.	vref VDD
V _{SS}	8	Ground	
V_{DD}	3	Power supply	
CE	6	Chip enable The internal latch data is written and the analog switches operate at the point this pin goes from high to low. Data transfer is enabled when this pin is at the high level.	V _{DD}
DI CL	4 5	Serial data and clock inputs for IC control.	<i>m</i>

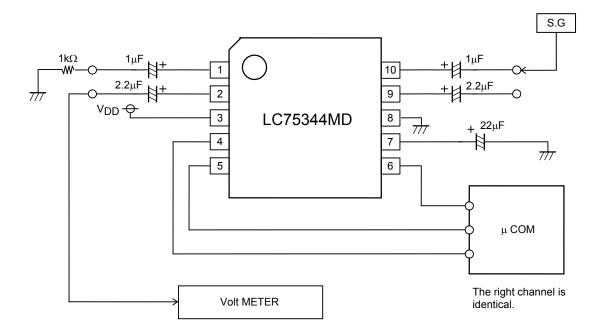
Equivalent Circuit



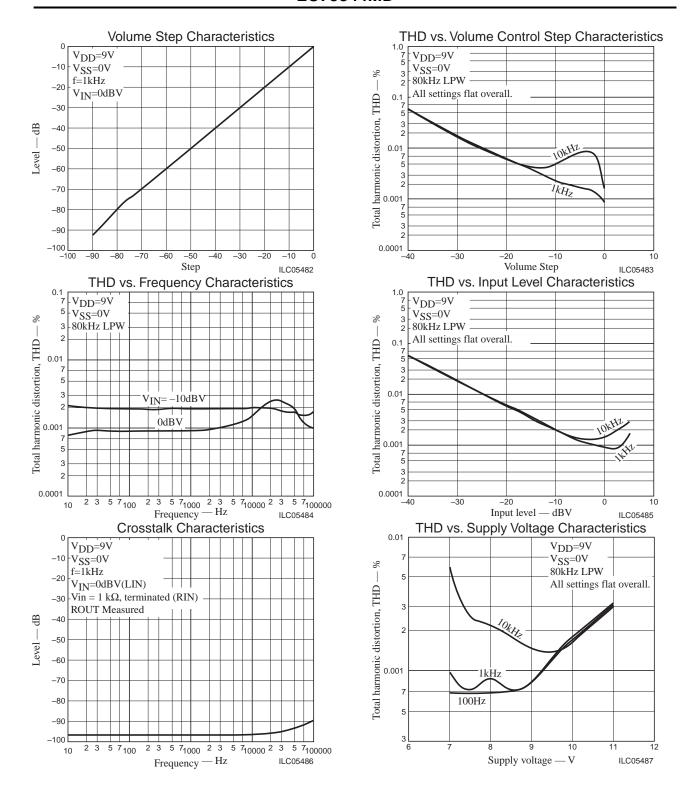
Reference Voltage Generator Equivalent Circuit



Test Circuit


• Total harmonic distortion

Output noise voltage



Crosstalk

Usage Notes

- The states of the internal analog switches are undefined after power is first applied. Muting must be applied externally until the control data has been sent.
- When performing the initial settings after power is first applied, both the left and right channel initial settings data must be sent before releasing the external mute.
- Either cover the CL, DI, and CE lines with the ground pattern or use shielded lines to prevent high-frequency digital noise from entering the analog signal system from these lines.

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LC75344MD-AH	SOIC-10 NB (Pb-Free / Halogen Free)	2500 / Tape & Reel

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa