

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

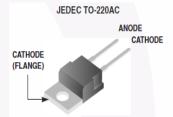
August 2014

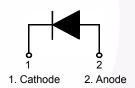
RURP15100_F085 15A 1000V Ultrafast Rectifier

Features

- High Speed Switching (t_{rr}=200ns(Typ.) @ I_F=15A)
- Low Forward Voltage(V_F=1.8V(Max.) @ I_F=15A)
- · Avalanche Energy Rated
- · AEC-Q101 Compliant

Applications


- · Automotive DCDC converter
- · Automotive On Board Charger
- · Switching Power Supply
- · Power Switching Circuits


15A, 1000V Ultrafast Rectifier

The RURP15100_F085 is an ultrafast diode with soft recovery characteristics (trr< 200ns). It has a low forward voltage drop and is of silicon nitride passivated, ionimplanted, epitaxial construction.

This device is intended for use as a freewheeling/ clamping diode and rectifier in a variety of automotive power supplies and other power switching automotive applications. Its low stored charge and ultrafast recovery with soft recovery characteristics minimizes ringing and electrical noise in many power switching circuits, thus reducing power loss in the switching transistor.

Pin Assignments

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

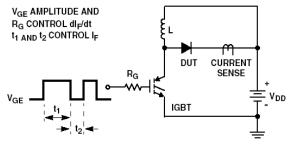
Symbol	Parameter	Ratings	Units	
V _{RRM}	Peak Repetitive Reverse Voltage	1000	V	
V _{RWM}	Working Peak Reverse Voltage	1000	V	
V_R	DC Blocking Voltage	1000	V	
I _{F(AV)}	Average Rectified Forward Current @ T _C = 25°C	15	Α	
I _{FSM}	Non-repetitive Peak Surge Current	45	Α	
E _{AVL}	Avalanche Energy(1A,40mH)	20	mJ	
T _{J,} T _{STG}	Operating Junction and Storage Temperature	- 55 ~175	°C	

Thermal Characteristics T_C = 25°C unless otherwise noted

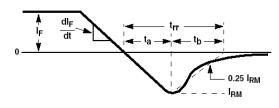
Symbol	Parameter	Max	Units	
$R_{\theta JC}$	Maximum Thermal Resistance, Junction to Case	0.94	°C/W	
$R_{\theta JA}$	Maximum Thermal Resistance, Junction to Ambient	85	°C/W	

Package Marking and Ordering Information

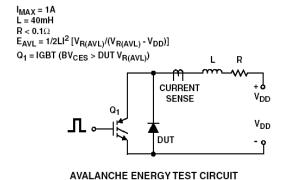
Device Marking Device		Package	Tube	Quantity
RURP15100 RURP15100_F085		TO-220AC	-	50

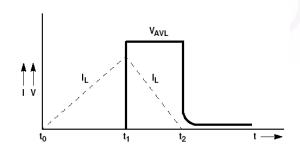

Electrical Characteristics T_C = 25°C unless otherwise noted

Symbol	Parameter	Conditions		Min.	Тур.	Max	Units
I _R	Instantaneous Reverse Current	V _R = 1000V	T _C = 25 °C	-	-	100	uA
			T _C = 175 °C	-	-	1000	uA
V _F ¹	Instantaneous Forward Voltage	I _F = 15A	T _C = 25 °C T _C = 175 °C	-	1.35 1.14	1.8 1.6	V V
t _{rr} ²	Reverse Recovery Time	$I_F = 1A$, di/dt = 100A/ μ s, $V_R = 650V$	T _C = 25 °C	-	126	260	ns
		$I_F = 15A$, di/dt = 100A/ μ s, $V_R = 650V$	T _C = 25 °C T _C = 175 °C	- -	200 720	450 -	ns ns
t _a t _b Q _{rr}	Reverse Recovery Time Reverse Recovery Charge	I_F =15A, di/dt = 100A/ μ s, V_R =650V	T _C = 25 °C	-	63 137 683	- - -	ns ns nC
W _{AVL}	Avalanche Energy	I _{AV} =1.0A, L=40mH	•	20	-	-	mJ


Notes

- 1. Pulse : Test Pulse width = $300\mu s$, Duty Cycle = 2%
- 2. Guaranteed by design.


Test Circuit and Waveforms



trr TEST CIRCUIT

t_{rr} WAVEFORMS AND DEFINITIONS

AVALANCHE CURRENT AND VOLTAGE WAVEFORMS

Typical Performance Characteristics

Figure 1. Typical Forward Voltage Drop vs. Forward Current

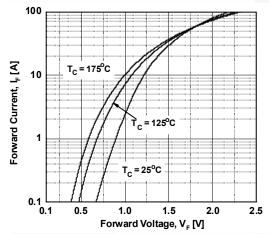


Figure 3. Typical Junction Capacitance

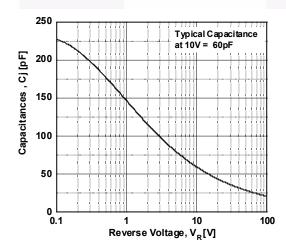


Figure 5. Typical Reverse Recovery Current vs. di/dt

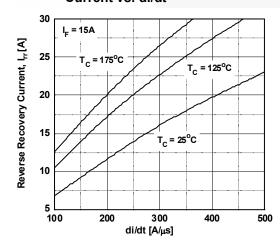


Figure 2. Typical Reverse Current vs.

Reverse Voltage

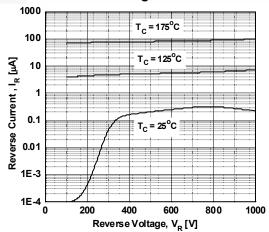
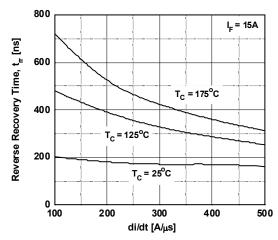
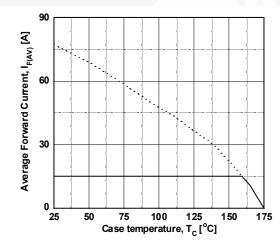
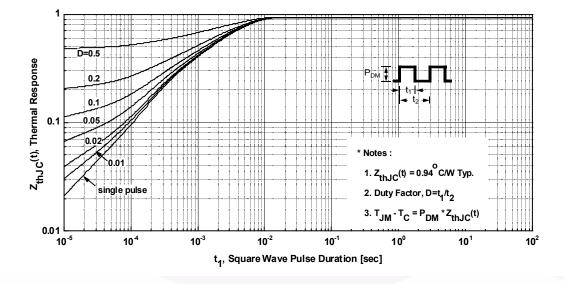
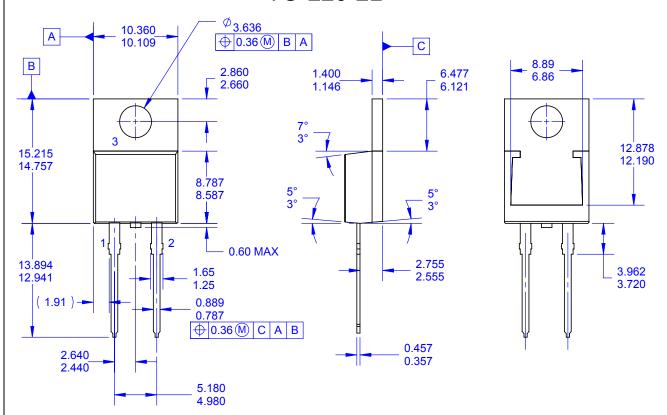


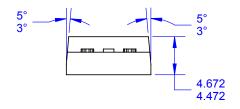
Figure 4. Typical Reverse Recovery Time vs. di/dt


Figure 6. Forward Current Derating Curve

Typical Performance Characteristics (Continued)


Figure 7. Reverse Recovery Charge 6000 I_E = 15A Reverse Recovery Charge, Qrr [nC] $T_C = 175^{\circ}C$ 4500 T_C = 125°C 3000 1500 T_C = 25°C 0 L 100 200 300 400 500 di/dt [A/μs]


Figure 8. Transient Thermal Response Curve

Mechanical Dimensions

TO-220-2L

NOTES:

- A. PACKAGE REFERENCE: JEDEC TO220 VARIATION AC.
- B. ALL DIMENSIONS ARE IN MILLIMETERS. C. DIMENSION AND TOLERANCE AS PER ASME
- Y14.5-2009 D. DIMENSIONS ARE EXCLUSIVE OF BURRS,
- MOLD FLASH AND TIE BAR PROTRUSIONS. E. DRAWING FILE NAME: TO220B02REV5
- F. FAIRCHILD SEMICONDUCTOR

Dimensions in Millimeters

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

F-PFS™ AccuPower™ FRFET® Awinda[®]

AX-CAP®* Global Power ResourceSM BitSiC™ GreenBridge™

Build it Now™ Green FPS™ CorePLUS™ Green FPS™ e-Series™ CorePOWER™ Gmax™

CROSSVOLT™ GTO™ IntelliMAX™ ISOPLANAR™ Current Transfer Logic™

DEUXPEED® Marking Small Speakers Sound Louder

and Better™ Dual Cool™ EcoSPARK® MegaBuck™ MICROCOUPLER™ EfficentMax™ ESBC™ MicroFET™

MicroPak™ MicroPak2™ MillerDrive™

Fairchild[®] MotionMax™ Fairchild Semiconductor® MotionGrid[®] FACT Quiet Series™ MTi[®] FACT[®] $\mathsf{MTx}^{\mathbb{R}}$ FAST® MVN® FastvCore[™]

mWSaver® FETBench™ OptoHiT™ FPS™

 $(l)_{\mathbb{R}}$ PowerTrench® PowerXS™

Programmable Active Droop™

QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM[®] STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™

SYSTEM ®* TinyBoost[®] TinyBuck[®] TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™

TriFault Detect™ TRUECURRENT®* μSerDes™

UHC' Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XSTM Xsens™ 仙童 ™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR FAIRCHILDSEMI.COM. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild scommitted to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification Product Status		Definition		
		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary First Production		Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed Full Production		Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete Not In Productio		Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative