Preferred Device

Silicon Controlled Rectifiers

Reverse Blocking Thyristors

Designed for high volume, low cost, industrial and consumer applications such as motor control; process control; temperature, light and speed control.

Features

- Small Size
- Passivated Die for Reliability and Uniformity
- Low Level Triggering and Holding Characteristics
- Available in Surface Mount Lead Form Case 369C
- Epoxy Meets UL 94 V-0 @ 0.125 in
- ESD Ratings: Human Body Model, 3B > 8000 V Machine Model, C > 400 V
- Pb-Free Packages are Available

MAXIMUM RATINGS (T_{.1} = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off–State Voltage (Note 1) (T _J = -40 to 125°C, Sine Wave, 50 to 60 Hz, Gate Open) MCR8DCM MCR8DCN	V _{DRM,} V _{RRM}	600 800	V
On–State RMS Current (180° Conduction Angles; T _C = 105°C)	I _{T(RMS)}	8.0	А
Average On–State Current (180° Conduction Angles; T _C = 105°C)	I _{T(AV)}	5.1	Α
Peak Non-Repetitive Surge Current (1/2 Cycle, Sine Wave 60 Hz, T _J = 125°C)	I _{TSM}	80	Α
Circuit Fusing Consideration (t = 8.3 msec)	l ² t	26	A ² sec
Forward Peak Gate Power (Pulse Width \leq 1.0 μ sec, T _C = 105°C)	P_{GM}	5.0	W
Forward Average Gate Power (t = 8.3 msec, T _C = 105°C)	$P_{G(AV)}$	0.5	W
Forward Peak Gate Current (Pulse Width \leq 1.0 μ sec, T_C = 105 $^{\circ}$ C)	I _{GM}	2.0	Α
Operating Junction Temperature Range	T_{J}	-40 to 125	°C
Storage Temperature Range	T _{stg}	-40 to 150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

 V_{DRM}, V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the device are exceeded.

Littelfuse.com

SCRs 8 AMPERES RMS 600 – 800 VOLTS

DPAK CASE 369C STYLE 4

MARKING DIAGRAM

PIN ASSIGNMENT		
1	Cathode	
2	Anode	
3	Gate	
4	Anode	

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.

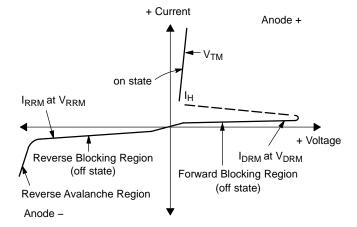
THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance - Junction-to-Case - Junction-to-Ambient - Junction-to-Ambient (Note 2)	R _{θJC} R _{θJA} R _{θJA}	2.2 88 80	°C/W
Maximum Lead Temperature for Soldering Purposes (Note 3)	TL	260	°C

ELECTRICAL CHARACTERISTICS (T_{.J} = 25°C unless otherwise noted)

Characteristics	Symbol	Min	Тур	Max	Unit
DFF CHARACTERISTICS					
Peak Repetitive Forward or Peak Repetitive Reverse Blocking Current $(V_{AK} = Rated \ V_{DRM} \ or \ V_{RRM}, \ Gate \ Open)$ $T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$	I _{DRM} , I _{RRM}	- -	_ _	0.01 5.0	mA
ON CHARACTERISTICS					
Peak On-State Voltage (Note 4) (I _{TM} = 16 A)	V _{TM}	-	1.4	1.8	V
Gate Trigger Current (Continuous dc) $ (V_{AK} = 12 \text{ V}, \text{ R}_{L} = 100 \Omega, \text{ T}_{J} = 25^{\circ}\text{C}) $ $ (\text{T}_{J} = -40^{\circ}\text{C}) $	I _{GT}	2.0	7.0 –	15 30	mA
Gate Trigger Voltage (Continuous dc) $ (V_{AK} = 12 \text{ V}, \text{ R}_L = 100 \Omega, \text{ T}_J = 25^{\circ}\text{C}) $ $ (T_J = -40^{\circ}\text{C}) $ $ (T_J = 125^{\circ}\text{C}) $	V _{GT}	0.5 - 0.2	0.65 - -	1.0 2.0 -	V
Holding Current ($V_{AK} = 12 \text{ V}$, Initiating Current = 200 mA, Gate Open) $T_J = 25^{\circ}\text{C}$ $T_J = -40^{\circ}\text{C}$	I _H	4.0	22 -	30 60	mA
Latching Current $(V_{AK} = 12 \text{ V}, I_G = 15 \text{ mA}, T_J = 25^{\circ}\text{C})$ $(V_{AK} = 12 \text{ V}, I_G = 30 \text{ mA}, T_J = -40^{\circ}\text{C})$	ΙL	4.0	22 -	30 60	mA
DYNAMIC CHARACTERISTICS					
Critical Rate of Rise of Off–State Voltage (V _{AK} = Rated V _{DRM} , Exponential Waveform, Gate Open, T _J = 125°C)	dv/dt	50	200	_	V/µs

^{2.} Surface mounted on minimum recommended pad size.


ORDERING INFORMATION

Device	Package	Shipping
MCR8DCMT4	DPAK	
MCR8DCMT4G	DPAK (Pb-Free)	2500 / Tape & Reel
MCR8DCNT4	DPAK	2300 / Tape & Neel
MCR8DCNT4G	DPAK (Pb-Free)	

 ^{1/8&}quot; from case for 10 seconds.
 Pulse Test: Pulse Width ≤ 2.0 ms, Duty Cycle ≤ 2%.

Voltage Current Characteristic of SCR

Symbol	Parameter
V _{DRM}	Peak Repetitive Off State Forward Voltage
I _{DRM}	Peak Forward Blocking Current
V_{RRM}	Peak Repetitive Off State Reverse Voltage
I _{RRM}	Peak Reverse Blocking Current
V_{TM}	Peak On State Voltage
IH	Holding Current

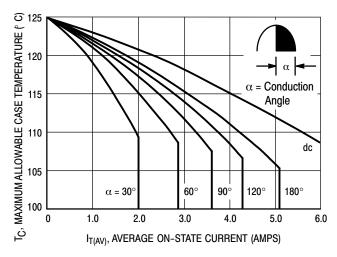


Figure 1. Average Current Derating

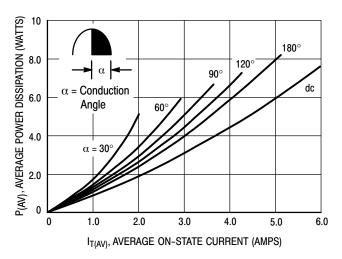


Figure 2. On-State Power Dissipation

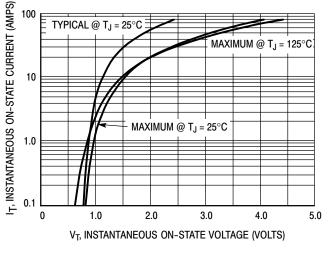


Figure 3. On-State Characteristics

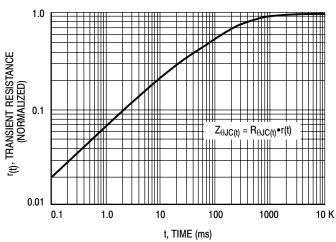


Figure 4. Transient Thermal Response

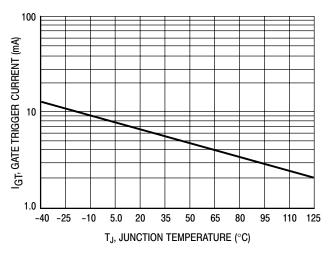


Figure 5. Typical Gate Trigger Current versus
Junction Temperature

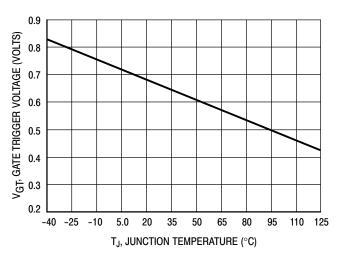


Figure 6. Typical Gate Trigger Voltage versus
Junction Temperature

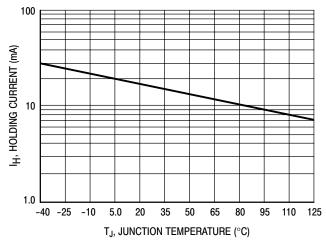


Figure 7. Typical Holding Current versus Junction Temperature

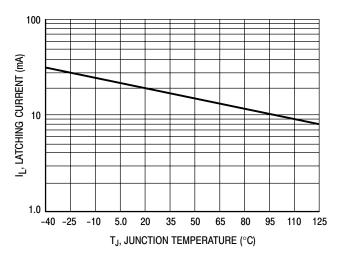


Figure 8. Typical Latching Current versus Junction Temperature

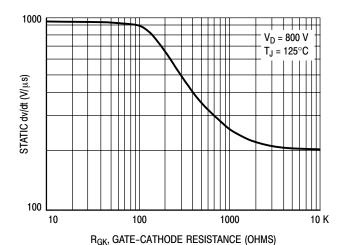
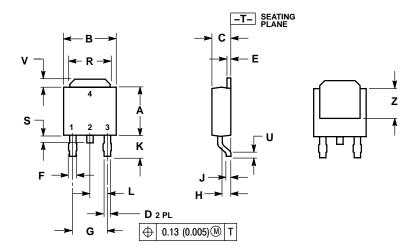



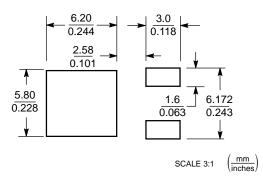
Figure 9. Exponential Static dv/dt versus Gate-Cathode Resistance

PACKAGE DIMENSIONS

DPAK CASE 369C **ISSUE O**

NOTES:

- 1. DIMENSIONING AND TOLERANCING
- PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.


	INCHES		CHES MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.22
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.180	BSC	4.58 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.102	0.114	2.60	2.89
L	0.090	BSC	BSC 2.29 BSC	
R	0.180	0.215	4.57	5.45
S	0.025	0.040	0.63	1.01
υ	0.020		0.51	
٧	0.035	0.050	0.89	1.27
Z	0.155		3.93	

STYLE 4:

PIN 1. CATHODE 2. ANODE 3. GATE

- 4. ANODE

SOLDERING FOOTPRINT

Littelfuse products are not designed for, and shall not be used for, any purpose (including, without limitation, automotive, military, aerospace, medical, life-saving, life-sustaining or nuclear facility applications, devices intended for surgical implant into the body, or any other application in which the failure or lack of desired operation of the product may result in personal injury, death, or property damage) other than those expressly set forth in applicable Littelfuse product documentation. Warranties granted by Littelfuse shall be deemed void for products used for any purpose not expressly set forth in applicable Littelfuse documentation. Littelfuse shall not be liable for any claims or damages arising out of products used in applications not expressly intended by Littelfuse as set forth in applicable Littelfuse documentation. The sale and use of Littelfuse products is subject to Littelfuse Terms and Conditions of Sale, unless otherwise agreed by Littelfuse.

Littelfuse.com