
TN262

Modbus Protocol (Serial and TCP)
for Rabbit-Based Systems

As defined by the Modbus Organization, Inc., “Modbus is an application-layer messaging protocol that 
provides client/server communication among boards connected on different types of buses or networks. 
Modbus is the de facto industrial serial standard that enables automation boards to communicate.”

Dynamic C provides the libraries and sample programs to allow you to create a Modbus link using Rabbit-
based single board computers (SBCs) and RabbitCore modules. Although the sample programs were ini-
tially developed around Rabbit’s BL2600 SBCs, they can be adapted for other Rabbit-based SBCs and 
core modules.

The Rabbit-based systems will work on a Modbus network containing non-Rabbit based products.

1.0 System and Software Requirements
The Dynamic C Modbus software was developed using the specifications published by the Modbus Orga-
nization on their Web site at www.modbus.org/specs.php. While the Modbus software will in principle 
work with all Rabbit-based SBCs and RabbitCore modules, keep the following things in mind.

• To be used as a Modbus TCP master or Modbus slave and serial gateway, the SBC or RabbitCore mod-
ule must have an Ethernet jack and must be connected to a customer-supplied Ethernet hub or router.

• You will have to make some small modifications to the Modbus Master sample program 
Modbus_RabWeb.c if you are using a Rabbit-based board other than the BL2600 for a Modbus 
slave. The edits requires the use of the Dynamic C RabbitWeb software.
022-0133 Rev. A www.rabbit.com 1

http://www.rabbit.com
http://www.modbus.org/specs.php


2.0 Setup Instructions
Figure 1 illustrates the test configuration that was used to develop the samples and libraries.

Figure 1.  Test Configuration Used to Develop Modbus Libraries

While you are running sample programs on the BL2600s, the PC’s Web browser is used to contact the 
RCM3700, which is running a RabbitWeb program specifically designed for the application. The Rabbit-
Web program is discussed in Section 2.1. 

The Web browser displays a page with four tabs, each representing a BL2600. The first tab also has an 
entry box for you to enter the IP address of the BL2600 used as the TCP slave and serial gateway. Each tab 
has a field for you to enter the Modbus address of the board for that tab. Default values are entered by the 
sample program running on the Modbus master. See Section 2.1.6 for further information on the browser 
interface.

��������
��	


��
���
��������	�
��
��
����	��

���

������
�������������	��
	������
	���	
��	�

������
����������
	����	��

������
2 www.rabbit.com TN262

http://www.rabbit.com


2.1 Running the Sample Programs
All sample programs referenced in this document are located in the “\Samples\Modbus” folder where you 
installed Dynamic C. This section gives instructions for downloading the sample programs that will allow 
for the configuration shown in Figure 1. These sample programs are described in detail starting in 
Section 3.1. 

2.1.1 Modbus Slaves

There are two types of Modbus slaves supported by the Modbus module: serial and gateway1.  Both types 
are used in our example and each type requires a different application program. Follow these steps to 
download the appropriate sample program to the target board:

1. Connect the programming cable to the programming header on the Rabbit-based board. For the example 
in Figure 1, that would be a BL2600. Connect the other end of the programming cable to a free COM 
port on the PC running Dynamic C.

2.  From Dynamic C, open 

..\Samples\Modbus\Modbus_Serial_Slave.c. for a serial slave

..\Samples\Modbus\Modbus_Gateway_BL2600.c. for a gateway slave

3.  Press F5 to compile and download the sample program to the Rabbit-based board.

No changes to the sample programs are needed if you are using BL2600s. 

The default IP address of the Modbus gateway is 10.10.6.102. This IP address may be changed in 
Modbus_Gateway_BL2600.c. If you change the IP of the Modbus gateway there, you must also 
change it in the sample program that operates as the Modbus master. In addition to an IP address, the gate-
way slave has a Modbus address defined in Modbus_Gateway_BL2600.c. The default Modbus 
address for the gateway slave is 1. To change it, modify the definition of MY_MODBUS_ADDRESS.

Serial slaves also must have a unique Modbus address. The Modbus address for a serial slave is defined by 
the macro MY_MODBUS_ADDRESS in Modbus_Serial_Slave.c. 

2.1.2 Modbus Master

The Modbus master in Figure 1 is the sample program Modbus_RabWeb.c running on an RCM3700. 
Using RabbitWeb, you can compile and download this source file to any RabbitCore module with Ethernet 
to create this Modbus master. 

Follow the same three steps given above for slave devices in order to put Modbus_RabWeb.c on the tar-
get board. The default IP address for the Modbus master is 10.10.6.101. The default IP address for the 
Modbus gateway is also defined in Modbus_RabWeb.c. 

1. For simplicity’s sake, the slave that operates as a TCP/IP gateway and can also communicate 
serially with other Modbus slaves will be referred to as a “gateway slave.” All other slaves are 
referred to by the interchangeable terms: “serial slave,” “Modbus slave” or just plain “slave.”
TN262 www.rabbit.com 3

http://rabbit.com


2.1.2.1  Modbus Master without BL2600s

The Modbus master used in this example is expecting its Modbus slaves, both gateway and serial, to be 
BL2600s. To use some other Rabbit-based board as a serial or gateway slave requires modification of 
Modbus_RabWeb.c.

Here are the editing steps to use Modbus_RabWeb.c with Rabbit-based slaves other than the BL2600.

1. Modbus_RabWeb.c is set up to communicate with two different slave boards, Type A and Type B. 
The I/O for both types of boards are set up for BL2600s in the sample program. If a BL2600 and 
another single-board computer, for example, a BL2100, is used, they will be different board types — 
the BL2600s are Type A boards and the BL2100s are Type B boards. Set the DEV_TYPE_A and the 
DEV_TYPE_B macros to reflect the I/O for the boards you are using.

#define DEV_TYPE_A 2    // Number of Type A boards
#define DEVADIO 16      // Device A max digital I/O
#define DEVAHCO 4       // Device A max high-current outputs
#define DEVADAC 4       // Device A max analog outputs
#define DEVAADC 8       // Device A max analog inputs

#define DEV_TYPE_B 2    // Number of Type B boards
#define DEVBDIO 16      // Device B max digital I/O
#define DEVBHCO 4       // Device B max high-current outputs
#define DEVBDAC 4       // Device B max analog outputs
#define DEVBADC 8       // Device B max analog inputs

NOTE: The same number of I/O must be specified for all the boards of that particular board 
type. For example, if one BL2600 does not use any analog outputs, but the other BL2600s do, 
you must specify “4” for the maximum number of analog outputs.

2.  Change BL2600 in the following line to the model number of the Rabbit-based board you are using, 
e.g., BL2100. This line controls the tab labels displayed in the Web browser.

#web dev.tabs select("GATEWAY(A1)"=0,"BL2600(A2)","BL2600(B1)",
"BL2600(B2)")

3.  Make the same types of changes in the remaining instances where “BL2600” is used, as in the following 
sample code comments.

switch ( dev.tabs )
{  // find the type of modbus device

case 0:             // device type Gateway BL2600(A1)
case 1:             // device type BL2600(A2)
case 2:             // device type BL2600(B1)
case 3:             // device type BL2600(B2)
4 www.rabbit.com TN262

http://www.rabbit.com


2.1.3 Set IP Address of PC

Follow these instructions to set up your PC or notebook. Check with your administrator if you are unable 
to change the settings as described here since you may need administrator privileges. The instructions are 
specifically for Windows 2000, but the interface is similar for other versions of Windows.

TIP: If you are using a PC that is already on a network, you will disconnect the PC from that net-
work to run these sample programs. Write down the existing network settings before changing 
them so you can change them back.

1. Go to the control panel (Start > Settings > Control Panel), and then double-click the Network icon.

2.  Select the network interface card used for the Ethernet interface you intend to use (e.g., TCP/IP Xircom 
Credit Card Network Adapter) and click on the “Properties” button. Depending on which version of 
Windows your PC is running, you may have to select the “Local Area Connection” first, and then click 
on the “Properties” button to bring up the Ethernet interface dialog. Then “Configure” your interface 
card for a “10Base-T Half-Duplex” or an “Auto-Negotiation” connection on the “Advanced” tab.

NOTE: Your network interface card will likely have a different name.

3.  Now select the “IP Address” tab, and check “Specify an IP Address” or select TCP/IP and click on 
“Properties” to assign an IP address to your computer (this will disable “obtain an IP address automati-
cally”):

IP Address: 10.10.6.100
Netmask: 255.255.255.0
Default gateway: 10.10.6.1

4.  Click <OK> or <Close> to exit the various dialog boxes.

2.1.4 Hardware Connections

Now you may connect the PC, Modbus master, and Modbus gateway to the Ethernet hub as shown in 
Figure 1. Finish by making a serial RS-485 connection of the Modbus slave to the Modbus gateway, and 
you will have your Modbus network running.

2.1.5 Summary of Default IP Addresses

• PC: 10.10.6.100

• Modbus Master: 10.10.6.101

• Modbus Gateway: 10.10.6.102

2.1.6 Using the Web Browser Interface

Enter 10.10.6.101 into your Web browser to access the Modbus master. If you changed the default IP 
address in Modbus_RabWeb.c, enter that IP address into the browser instead of 10.10.6.101.

The browser will display the page shown in Figure 2.

Use the tabs at the top of the screen to select the Modbus gateway or serial slave to configure. 
TN262 www.rabbit.com 5

http://rabbit.com


Figure 2.  Modbus Master RabbitWeb Page 

1. Enter the IP address (default 10.10.6.102) and the Modbus address (1) for the gateway slave.

2.  Set the configurable I/O. Checked I/O are outputs, whose state can then be checked to be on by default 
or left unchecked to be off by default; unchecked I/O will be inputs.

3.  The digital inputs are greyed out because no further configuration is available.

4.  Set the configurable high-current outputs. Checked outputs will be sourcing; unchecked outputs will be 
sinking. Check their state to be on by default or leave the state unchecked for the output to remain off by 
default.

NOTE: If you plan to switch a high-current output between sourcing and sinking operation, the 
high-current output must be turned “off” when changing its mode.

5.  Set the analog outputs. They can be up to ±10 V DC or 4–20 mA.

6.  Set the analog inputs. They can be up to 10 V DC single-ended voltage, up to ±10 V DC differential 
voltage, or 4–20 mA current.

Click the button labeled “Update” to send the configuration to the slave and to receive updated status 
information from the slave. You may then configure other serial slave boards by selecting other tabs. 
6 www.rabbit.com TN262

http://www.rabbit.com


3.1 Modbus Device Types
There are three types of Modbus devices supported by this software:

1. Modbus master

2.  Modbus gateway slave

3.  Modbus serial slave

The following sections discuss each of these Modbus devices in turn.

3.2 Modbus Master
The Dynamic C library ModBus_Master.lib implements the protocol for a Modbus master. The 
library is independant of the communication method. It is equally compatible with Ethernet and serial 
interfaces.

This library supports the Modbus function codes listed in Table 1.

3.2.1 Modbus Master Sample Programs

At the time of this writing, there are three Modbus master sample programs.

1. The Modbus master Modbus_RabWeb.c communicates using TCP over Ethernet. This Modbus 
master allows you to configure the I/O on the slave device.

2.  The Modbus master Modbus_Serial_Master.c communicates over a serial connection. This 
sample program has limited functionality and is offered as a template for the user to create a Modbus 
master. 

3.  The Modbus master Modbus_Master.exe also communicates over a serial connection. It is meant 
to be used as a debugging utility. You will find it in a folder named “Modbus” located in the root direc-
tory where you installed Dynamic C. Look in the subfolder “Docs” for Modbus_Master.pdf for 
instructions on using this utility program.

Table 1.  Modbus_Master.lib Support of Modbus Function Codes

Modbus
 Function Code

Description of Function Code
(# of bits to change I/O state)

Corresponding Dynamic C 
Function

0x01 Read Coils (1 bit) MBM_ReadCoils

0x03 Read Holding Registers (16 bit) MBM_ReadRegs

0x04 Read Input Registers (16 bit) MBM_ReadInRegs

0x05 Write Single Coil (1 bit) MBM_WriteCoil

0x06 Write Single Register (16 bit) MBM_WriteReg

0x0F Write Multiple Coils (1 bit) MBM_WriteCoils
TN262 www.rabbit.com 7

http://rabbit.com


3.2.2 Dynamic C API for Modbus Master

MBM_ReadCoils

int MBM_ReadCoils( int MB_address, int *Result, int Starting_Coil, 
int Nbr_of-Coils );

DESCRIPTION

Modbus function code = 0x01.

Reads the state of the specified coils, a.k.a., digital outputs. This function is not reentrant.

PARAMETERS

MB_address Modbus address of the target board.

Result Pointer to the starting address where to put the result; state of the coils:

1 = on
0 = off

Each coil state will occupy one bit of the result with the first coil in bit 
0, the next in bit 1, etc.

Starting_Coil Starting coil number to read, relative to 1.

Nbr_of-Coils Number of coils to read, maximum of 16.

RETURN VALUE

MB_SUCCESS = success
MBM_INVALID_PARAMETER = invalid parameter
MBM_PACKET_ERROR = packet error
MB_BADADDRESS = illegal channel

LIBRARY

MODBUS_MASTER.LIB
8 www.rabbit.com TN262

http://www.rabbit.com


MBM_ReadRegs

int MBM_ReadRegs( int MB_address, int *Result, int Starting_Reg, 
int Nbr_of_Regs );

DESCRIPTION

Modbus function code = 0x03.

Reads the specified registers. This function is not reentrant.

PARAMETERS

MB_address Modbus address of the target board

Result Pointer to the starting address where to put the result

Starting_Reg Starting register number, 1 relative to read

Nbr_of-Regs Number of registers to read

RETURN VALUE

MB_SUCCESS = success
MBM_INVALID_PARAMETER = invalid parameter
MBM_PACKET_ERROR = packet error
MB_BADADDRESS = illegal channel

LIBRARY

MODBUS_MASTER.LIB
TN262 www.rabbit.com 9

http://rabbit.com


MBM_ReadInRegs

int MBM_ReadInRegs( int MB_address, int *Result, int Starting_Reg, 
int Nbr_of_Regs );

DESCRIPTION

Modbus function code = 0x04.

Reads the specified input registers. This function is not reentrant.

PARAMETERS

MB_address Modbus address of the target board

Result Starting address to put the results

Starting_Reg Starting input register number, 1 relative, to read

Nbr_of-Regs Number of registers to read

RETURN VALUE

MB_SUCCESS = success
MBM_INVALID_PARAMETER = invalid parameter
MBM_PACKET_ERROR = packet error
MB_BADADDRESS = illegal channel

LIBRARY

MODBUS_MASTER.LIB
10 www.rabbit.com TN262

http://www.rabbit.com


MBM_WriteCoil

int MBM_WriteCoil( int MB_address, int CoilNbr, int CoilState );

DESCRIPTION

Modbus function code = 0x05. 

This function writes a value to a single coil. This function is not reentrant.

PARAMETERS

MB_address Modbus address of the target board

CoilNbr Coil number

CoilState Coil state

RETURN VALUE

MB_SUCCESS = success
MBM_INVALID_PARAMETER = invalid parameter
MBM_PACKET_ERROR = packet error
MB_BADADDRESS = illegal channel

LIBRARY

MODBUS_MASTER.LIB
TN262 www.rabbit.com 11

http://rabbit.com


MBM_WriteReg

int MBM_WriteReg( int MB_address, int RegNbr, int RegData );

DESCRIPTION

Modbus function code = 0x06. 

This function writes a value to a single register. This function is not reentrant.

PARAMETERS

MB_address Modbus address of the target board

RegNbr Register number

RegData Register data

RETURN VALUE

MB_SUCCESS = success
MBM_INVALID_PARAMETER = invalid parameter
MBM_PACKET_ERROR = packet error
MB_BADADDRESS = illegal channel

LIBRARY

MODBUS_MASTER.LIB
12 www.rabbit.com TN262

http://www.rabbit.com


MBM_WriteCoils

int MBM_WriteCoils( int MB_address, int StartCoilNbr, int NbrCoils, 
int CoilStates );

DESCRIPTION

Modbus function code = 0x0F. 

This function writes values to coils. This function is not reentrant.

PARAMETERS

MB_address Modbus address of the target board

StartCoilNbr Starting coil number

NbrCoils Number of coils

CoilStates Coil states, max. 16, with lowest coil number value in bit 0

RETURN VALUE

MB_SUCCESS = success
MBM_INVALID_PARAMETER = invalid parameter
MBM_PACKET_ERROR = packet error
MB_BADADDRESS = illegal channel

LIBRARY

MODBUS_MASTER.LIB

3.3 Modbus Slaves
As mentioned previously, there are two types of Modbus slaves supported by the software: serial and gate-
way. Both types need ModBus_Slave.lib and a board-specific library such as 
Modbus_Slave_BL26xx.lib. These two libraries implement the Modbus protocol for a slave.

The gateway slave requires the use of MODBUS_SLAVE_TCP.LIB in addition to 
ModBus_Slave.lib and a board-specific library such as Modbus_Slave_BL26xx.lib. 

For slaves that are not BL2600s, a different board-specific library is required. If you have an LP3500 that 
you want to use as a serial slave, the library Modbus_Slave_LP35xx.lib is provided for you. If you 
want to use some other Rabbit-based board as a slave, you must provide a board-specific library similar to 
Modbus_Slave_BL26xx.lib and Modbus_Slave_LP35xx.lib. 

Dynamic C libraries that support the Modbus protocol are in the folder “..\Lib\..\Modbus” where you 
installed Dynamic C.

The following table summarizes the above text:
TN262 www.rabbit.com 13

http://rabbit.com


The Modbus commands listed in Table 3 are supported by both  MODBUS_SLAVE.LIB and 
MODBUS_SLAVE_TCP.LIB. The most significant byte is transmitted/received first (Big Endian) for 16-
bit (2-byte) data.

3.3.1 Modbus Message Structure

Before looking at the libraries in more detail, we will look at the Modbus message. An understanding of its 
structure, for both serial and TCP/IP communication, will help make sense of the tasks performed by the 
libraries. 

The format of a Modbus Protocol Data Unit (PDU) is:
 

Data values are handled most significant byte first.

The format of a Modbus Application Data Unit (ADU) is:

Table  2.  Modbus Slave Library Requirements

Modbus Slave Type Dynamic C Library

Serial Slave ModBus_Slave.lib
Board-specific library (e.g., Modbus_Slave_BL26xx.lib)

Gateway Slave ModBus_Slave.lib
ModBus_Slave_TCP.lib
Board-specific library (e.g., Modbus_Slave_BL26xx.lib)

Table 3.  Modbus Commands Supported by Slaves

Modbus 
Function Code

Description of Function Code
(# of bits to change I/O state)

Corresponding Dynamic C Function 
from Board-Specific Library

0x01 Read Coils (1 bit) mbsDigOutRd()

0x02 Read Input Status (1 bit) mbsDigIn()

0x03 Read Holding Registers (16 bit) mbsRegOutRd()

0x04 Read Input Registers (16 bit) mbsRegIn()

0x05 Write Single Coil (1 bit) mbsDigOut()

0x06 Write Single Register (16 bit) mbsRegOut()

0x0F Write Multiple Coils (1 bit) mbsDigOut()

0x10 Write Multiple Registers (16 bit) mbsRegOut()

0x16 Mask Write Register (16 bit) mbsRegOut() and mbsRegOutRd()

0x17 Read/Write Multiple Registers (16 bit) mbsRegOut() and mbsRegIn()

����

������� �	
	
14 www.rabbit.com TN262

http://www.rabbit.com


 

For a serial interface the Additional Address is a single byte with the target board’s Modbus address. The 
CRC is two bytes and is stored low byte first.

��� ������������������


��	���������
TN262 www.rabbit.com 15

http://rabbit.com


The format of a Modbus TCP Application Protocol (MBAP) packet is:
 

The contents of the MBAP Header are:

• Transaction Identifier (2 bytes): A value that is incremented with each transaction. It is used to identify 
the response to the current transaction. The libraries do not currently use this value, although it is gener-
ated and incremented with each transaction.

• Protocol Identifier (2 bytes): Always 0.

• Length (2 bytes): Number of bytes following this element

• Unit Identifier (1 byte): Modbus board address.

3.3.2 MODBUS_SLAVE_TCP.LIB

This library receives the Modbus/TCP packet from a Modbus master, removes the MBAP header, and does 
one of the following steps.

1. If the message is for “this board,” send the message to the msExec() function in the 
MODBUS_SLAVE.LIB library.

2.  If the message is for a downstream unit, create and send the ADU, wait for the response, and send the 
response to the Modbus master.

� ���!�	��� ���
16 www.rabbit.com TN262

http://www.rabbit.com


3.3.2.1 Configuration Macros

The library MODBUS_SLAVE_TCP.LIB uses the following macros. 

INACTIVE_PERIOD

Period of inactivity in seconds (default 5), before sending a keepalive, or 0 to turn off keepalive.

KEEPALIVE_WAITTIME

Number of seconds (default 3) to wait between keepalives after the first keepalive was sent.

KEEPALIVE_NUMRETRYS

Number of retries (default 3).

MB_MAX_SKT

Maximum number of socket connections (default 1).

MODBUS_GATEWAY

#define this macro only if this board is a gateway.

TCPCONFIG

Defining this macro to “0” means that the application does not use the TCP/IP configuration macro defini-
tions from TCP_CONFIG.LIB.

USE_ETHERNET

This macro must be defined to “1” for stack support of the Ethernet interface.

IFCONFIG_ETH0

This macro is defined as follows to set the default IP address and netmask for the gateway slave before 
bringing up the interface.

IFCONFIG_ETH0 \
IFS_IPADDR,aton ("10.10.6.101"), \
IFS_NETMASK,aton("255.255.255.0"), \
IFS_UP

MODBUS_DEBUG

This macro has two options:
• nodebug, the default, disallows library debugging

• debug allows library debugging

MODBUS_DEBUG_PRINT

This macro is a bit flag, defined as follows:

• All bits = 0 (default) = no printing of messages

• bit 0 = 1 = state machine transitions

• bit 1 not implemented.

• bit 2 = 1 = print TCP packets

• bit 3 = 1 = print serial packets
TN262 www.rabbit.com 17

http://rabbit.com


3.3.2.2 API Functions

MODBUS_SLAVE_TCP.LIB contains the following two API functions: MODBUS_TCP_Init() and 
MODBUS_TCP_tick().

MODBUS_TCP_Init

void MODBUS_TCP_Init( unsigned wAddr, unsigned wPort );

DESCRIPTION

This function must be called one time only. It initializes the Modbus TCP system. It does not 
initialize the TCP/IP connection.

PARAMETERS

wAddr The Modbus slave address

wPort Modbus TCP port number; the standard Modbus port is 502

MODBUS_TCP_tick

void MODBUS_TCP_tick( void );

DESCRIPTION

This function call is a process ModBus TCP state handler. It must be called repeatedly, usually 
within a loop, by the program in order to ensure that the TCP/IP command packets get serviced 
properly. The function call causes tcp_tick() to execute, and services one socket each time 
it is called.

3.3.3 MODBUS_SLAVE.LIB

The library MODBUS_SLAVE.LIB parses the Modbus PDU and calls the appropriate function in the 
board-specific library. The API functions MODBUS_Serial_tick() and MODBUS_CRC() are 
defined in this library. None of the other functions in MODBUS_SLAVE.LIB are meant to be accessed 
directly by a slave application program.

MODBUS_Serial_tick

void MODBUS_Serial_tick( void );
18 www.rabbit.com TN262

http://www.rabbit.com


DESCRIPTION

Checks for a command from a Modbus master. This function is called from a Modbus slave that 
is connected to a Modbus master or gateway slave via a serial port. If there is no such serial 
connection, this function is not needed.

This function requires the function calls MODBUS_Serial_Rx() and 
MODBUS_Serial_Tx() from the MODBUS_SLAVE_BL26xx.LIB library.

MODBUS_CRC

 unsigned MODBUS_CRC( unsigned char *pcMess, unsigned wLen );

DESCRIPTION

Alternate cyclical redundancy check (CRC) calculation. To use this alternate CRC function you 
must insert:

#define USE_MODBUS_CRC

before the #use directives for the Modbus libraries.

PARAMETERS

pcMess Address of bytes for CRC calculation

wLen Number of bytes in paraameter1

RETURN VALUE

CRC value

3.3.4 Board-Specific Libraries 

Each Modbus slave device must have an associated board-specific library that handles the I/O operations. 

At the time of this writing, two board-specific libraries are available: MODBUS_SLAVE_BL26xx.LIB 
and MODBUS_SLAVE_LP35xx.LIB. As the names imply, these libraries are for the BL2600 series and 
LP3500 single-board computers.Taken together, these two libraries present an excellent template for creat-
ing board-specific Modbus libraries for other Rabbit-based boards.

The following functions must be defined in the board-specific library regardless of whether they are actu-
ally used.

• mbsStart() is called whenever a packet is received.

• mbsDone() is called whenever a packet is finished.

The following function descriptions are from MODBUS_SLAVE_BL26xx.LIB. 
TN262 www.rabbit.com 19

http://rabbit.com


mbsDigOutRd

int mbsDigOutRd( unsigned OutputNbr, int *pnState );

DESCRIPTION

Modbus function code = 0x01.

Reads the specified output. This is slightly different than mbsDigIn() in that this function 
call returns a “1” if the output is on (low). It essentially returns the opposite of mbsDigIn().

This function is not reentrant.

PARAMETERS

OutputNbr Output number: 0..15

pnState Pointer to destination variable

RETURN VALUE

MB_SUCCESS = success
MB_BADADDR = illegal channel
MB_DEVNOTSET = I/O not set as output

LIBRARY

MODBUS_SLAVE_BL26XX.LIB
20 www.rabbit.com TN262

http://www.rabbit.com


mbsDigIn

int mbsDigIn( unsigned InputNbr, int *pnState );

DESCRIPTION

ModBus function code = 0x02.

Reads the specified input. This function is not reentrant.

PARAMETERS

InputNbr Input number: 0..31
Inputs 0..15 are the DIO signals
Inputs16..31 are DIN16..31

pnState Pointer to destination variable; a “1” is returned if the input is high

RETURN VALUE

MB_SUCCESS = success
MB_BADADDR = illegal channel
MB_DEVNOTSET = I/O not set as input

LIBRARY

MODBUS_SLAVE_BL26XX.LIB
TN262 www.rabbit.com 21

http://rabbit.com


mbsRegOutRd

int mbsRegOutRd( unsigned OutRegNbr, unsigned *pwValue );

DESCRIPTION

ModBus function code = 0x03.

Reads an 8-bit output register. This function is not reentrant.

PARAMETERS

OutRegNbr Register number:
0 = DIO 0..7 — read state of pins and invert (0 V = 1)
1 = DIO 8..15 — read state of pins and invert (0 V = 1)
2 = HOUT 0..3 — return state of shadow register

Special registers
See mbsRegIn()

pwValue Pointer to destination variable; for each bit:
0 = output is off
1 = output is on

RETURN VALUE

MB_SUCCESS = success
MB_BADADDR = illegal channel
MB_DEVNOTSET = I/O not set as output

LIBRARY

MODBUS_SLAVE_BL26xx.LIB
22 www.rabbit.com TN262

http://www.rabbit.com


mbsRegIn

int mbsRegIn( unsigned InRegNbr, unsigned *pwValue );

DESCRIPTION

ModBus function code = 0x04.

Reads an input register. This function is not reentrant.

PARAMETERS

InRegNbr Register number:
0 = DIO 0..7
1 = DIO 8..15
2 = IN 16..23 
3 = IN 24..31

Special registers:
1000 = DIO 0..15 configuration; see digOutConfig()
1001 = HOUT 0..3 configuration; see digHoutConfig()
3nnx = analog input, where nn = A/D channel

3nn0, 3nn1 = floating point (volts)
3nn1 = returns the MS word
3nn2 = Read the A/D converter and return the integer (millivolts)
3003 = Read the A/D converter and return the integer raw value

See mbsRegOut() for gain code storage

pwValue Pointer to destination variable

RETURN VALUE

MB_SUCCESS = success
MB_BADADDR = illegal channel
MB_DEVNOTSET = I/O not set as input

LIBRARY

MODBUS_SLAVE_BL26xx.LIB
TN262 www.rabbit.com 23

http://rabbit.com


mbsDigOut

int mbsdigOut( unsigned OutputNbr, int state );

DESCRIPTION

ModBus command = 0x05, 0x0F.

Turns the specified output on or off. This function is not reentrant.

PARAMETERS

OutputNbr Output channel number:
0 ≤ channel ≤ 15: DIO 00..15
16 ≤ channel ≤19: HOUT 0..3 (high-current)

state Output state:
0 = turn output off
1 = turn output on

0 ≤ channel ≤ 15
Connect the load to GND

16 ≤ channel ≤ 19
Sinking - connect the load to GND
Sourcing - connect the load to +V

RETURN VALUE

MB_SUCCESS = success
MB_BADADDR = illegal channel
MB_BADDATA = illegal data value
MB_DEVNOTSET = I/O not set as output

LIBRARY

MODBUS_SLAVE_BL26xx.LIB
24 www.rabbit.com TN262

http://www.rabbit.com


mbsRegOut

int mbsRegOut( unsigned OutRegNbr, unsigned wValue );

DESCRIPTION

Modbus function codes = 0x06, 0x10, 0x16 and 0x17.

Writes to an I/O register. This function is not reentrant.

PARAMETERS

OutRegNbr Register number:
0 = DIO 0..7
1 = DIO 8..15
2 = HOUT 0..3

Special Registers:
1000 = DIO 0..15 configuration — see digOutConfig()
1001 = HOUT 0..3 configuration — see digHoutConfig()
2nnx = Analog output where nn = D/A converter channel no.

2nn0, 2nn1 = floating point volts; see anaOutVolts()
2nn2 = integer millivolts; uses anaOutVolts()
2nn3 = integer raw value; see anaOut()
2nn9 = urns on D/A power: see anaOutPwr()

3nnx = A/D converter input where nn = A/D converter channel
3nn8 = integer operating mode — see anaInConfig()

nn = channel pair 0–3
3nn9 = integer range code used for mbsRegIn() 0–7

1999 = miscellaneous configuration bits

wValue Register value (each bit) for DIO 0..15
0 = turn output off
1 = turn output on

Register values for HOUT 0..3 (4 bits per output)
HOUT 0 = bits 0..3, ...
0 = both transistors off = tri-state
1 = source (upper transistor on)
2 = sink (lower transistor on)
All other values are illegal.

RETURN VALUE

MB_SUCCESS = success
MB_BADADDR = illegal channel
MB_DEVNOTSET = I/O not set as output

LIBRARY

MODBUS_SLAVE_BL26xx.LIB
TN262 www.rabbit.com 25

http://rabbit.com


The MODBUS_SLAVE_BL26xx.LIB library also contains functions for communicating with “down-
stream” Modbus slaves.

MODBUS_Serial_Init

int MODBUS_Serial_Init();

DESCRIPTION

Initializes the serial port for RS-485 operation. This function call requires the following macros.

MODBUS_BAUD1: baud rate
MODBUS_PORT: serial port on the slave device; e.g., on the BL2600 it is E.
SERIAL_MODE:  mode to configure the serial port selected by MODBUS_PORT; e.g., on the 
BL2600 it is 1 or 3.

See the User’s Manual for your board to determine the available serial ports and the mode that 
will configure the selected serial port for RS-485 communication.

This function calculates Serial_timeout, which is used by MODBUS_Serial_Rx() as 
the timeout between bytes once a byte has been received; the timeout is 5 byte times or 2 ms, 
whichever is greater.

This function is called by MODBUS_TCP_Init() if the macro MODBUS_GATEWAY is #de-
fined.

This function is not reentrant.

RETURN VALUE

MB_SUCCESS = success
MB_BADDATA = if illegal SERIAL_MODE

LIBRARY

MODBUS_SLAVE_BL26xx.LIB

1. This macro was renamed from RS485_BAUD.
26 www.rabbit.com TN262

http://www.rabbit.com


MODBUS_Serial_Tx

int MODBUS_Serial_Tx( char *Packet, int ByteCount );

DESCRIPTION

Transmits a Modbus packet to a “downstream” board. Calculates CRC and appends it to packet.

This function is not reentrant.

PARAMETERS

Packet Pointer to packet. The packet must have a two-byte pad at the end for inclu-
sion of the CRC word

ByteCount Number of bytes in the packet

RETURN VALUE

MB_SUCCESS = success

LIBRARY

MODBUS_SLAVE_BL26xx.LIB

MODBUS_Serial_Rx

int MODBUS_Serial_Rx( char *DataAddress );

DESCRIPTION

Receives the response from the Modbus slave. The function stores the bytes in the global array 
acMSReply and uses the global variable Serial_timeout. It is the responsibility of the 
caller to handle a timeout if required.

This function is not reentrant.

PARAMETER

DataAddress Address to put the data

RETURN VALUE

0 = no message
>0 = number of bytes with valid CRC
MB_CRC_ERROR = invalid CRC

LIBRARY

MODBUS_SLAVE_BL26xx.LIB
TN262 www.rabbit.com 27

http://rabbit.com

	Modbus Protocol (Serial and TCP) for Rabbit-Based Systems
	1.0 System and Software Requirements
	2.0 Setup Instructions
	2.1 Running the Sample Programs
	2.1.1 Modbus Slaves
	2.1.2 Modbus Master
	2.1.2.1 Modbus Master without BL2600s

	2.1.3 Set IP Address of PC
	2.1.4 Hardware Connections
	2.1.5 Summary of Default IP Addresses
	2.1.6 Using the Web Browser Interface


	3.1 Modbus Device Types
	3.2 Modbus Master
	3.2.1 Modbus Master Sample Programs
	3.2.2 Dynamic C API for Modbus Master
	MBM_ReadCoils
	MBM_ReadRegs
	MBM_ReadInRegs
	MBM_WriteCoil
	MBM_WriteReg
	MBM_WriteCoils


	3.3 Modbus Slaves
	3.3.1 Modbus Message Structure
	3.3.2 MODBUS_SLAVE_TCP.LIB
	3.3.2.1 Configuration Macros
	INACTIVE_PERIOD
	KEEPALIVE_WAITTIME
	KEEPALIVE_NUMRETRYS
	MB_MAX_SKT
	MODBUS_GATEWAY
	TCPCONFIG
	USE_ETHERNET
	IFCONFIG_ETH0
	MODBUS_DEBUG
	MODBUS_DEBUG_PRINT

	3.3.2.2 API Functions
	MODBUS_TCP_Init
	MODBUS_TCP_tick


	3.3.3 MODBUS_SLAVE.LIB
	MODBUS_Serial_tick
	MODBUS_CRC

	3.3.4 Board-Specific Libraries
	mbsDigOutRd
	mbsDigIn
	mbsRegOutRd
	mbsRegIn
	mbsDigOut
	mbsRegOut
	MODBUS_Serial_Init
	MODBUS_Serial_Tx
	MODBUS_Serial_Rx





