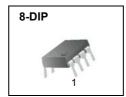


Is Now Part of

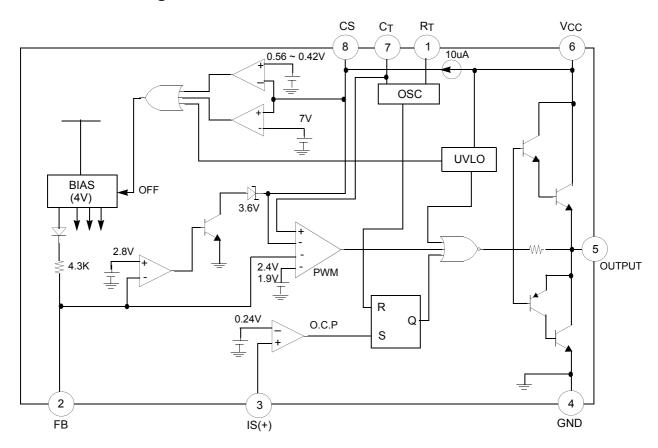
ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo


KA7552A/KA7553A SMPS Controller

Features


- Built-in drive circuits for direct connection power MOSFET (I_O = ±1.5A)
- Wide operating frequency range (5kHz ~ 600kHz)
- Pulse by pulse over current limiting
- · Over load protection
- On/off control by external trigger
- · Internal UVLO
- Low standby current (typ. 90uA)
- · Soft start circuit

Description

The KA7552A/KA7553A are switching power control IC for wide operating frequency range. The internal circuits include pulse by pulse current limiting, protection, on/off control by external trigger, low standby current, soft start, and high current totempole output for driving a POWER MOSFET. Maximum duty of the KA7552A is 70% and the KA7553A is 46%. When duty is maximum, the input threshold voltage of pin2 & pin8 are not same in KA7552A and KA7553A.

Internal Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Supply voltage	Vcc	30	V
Output current	lo	±1.5	Α
Input voltage at overcurrent detection pin	VIN(IS)	-0.3 to 4	V
Input voltage at FB pin	VIN(FB)	4	V
Input current at CS pin	IIN(CS)	2	mA
Total power dissipation (Ta = 25°C)	PD	800	mW
Operating temperature	TOPR	-25 to 85	°C
Storage temperature range	TSTG	-65 to 150	°C
Junction temperature	Tj	+125	°C

Electrical Characteristics

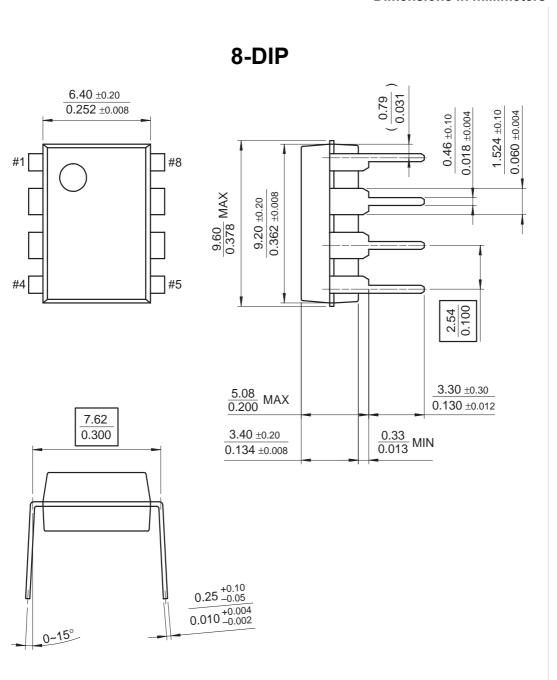
(VCC = 18V, FOSC = 135kHz, TA = 25°C, unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
OSCILLATOR SECTION						
Initial accuracy	Fosc	C _T = 360pF, T _J = 25°C	125	135	145	kHz
Frequency variation 1	ΔΕ/ΔV	Vcc = 10V to 30V	-	±1	±3	%
Frequency variation 2 ^(Note1)	ΔΕ/ΔV	T _A = 25°C to 85°C	-	±1.5	-	%
Ramp high voltage	VRH	CT = 360pF, TJ = 25°C	2.80	3.08	3.30	V
Ramp low voltage	VRL	CT = 360pF, TJ = 25°C	0.6	0.9	1.2	V
Amplitude	Vosc	VPIN7, peak to peak	1.80	2.18	2.50	V
PULSE WIDTH MODULATION SEC	TION					
Input threshold voltage(pin2)	VTH(FBD)	Duty cycle = 0%	0.6	0.75	0.95	V
Input threshold voltage(pin2) ^(Note1)	VTH(FB1) (KA7552)	Duty cycle = Dmax 1	2.1	2.3	2.6	V
	VTH(FB2) (KA7553)	Duty cycle = Dmax 2	1.6	1.8	2.1	V
Max. duty cycle	D(Max1) (KA7552)	-	66	70	74	%
	D _(Max2) (KA7553)	-	43	46	49	%
Source current(pin2)	ISOURCE(FB)	VPIN2 = 0V	-660	-800	-960	uA
OVERCURRENT LIMIT SECTION						
Input threshold voltage	VTH(IS)	-	0.21	0.24	0.27	V
Source current(pin3)	ISOURCE(IS)	V _{PIN3} = 0V	-300	-200	-100	uA
Deley time ^(Note1)	T _D	-	-	150	-	ns
SOFT START SECTION						
Charging current	ICHG	V _{PIN8} = 0V	-15	-10	-5	uA
Input threshold voltage(pin8)	VTH(CSO)	-	0.7	0.9	1.1	V
Input threshold voltage(pin8) ^(Note1)	VTH(CS1) (KA7552)	Duty cycle = Dmax 1	2.2	2.4	2.6	V
	VTH(CS2) (KA7553)	Duty cycle = Dmax 2	1.7	1.9	2.1	V
LATCH MODE SHUTDOWN CIRCUIT SECTION						
Sink current(pin8)	ISINK(CS)	VPIN8 = 6V, VPIN2 = 1V	25	45	65	uA
Shutdown threshold voltage	VTH(SD,CS)	-	6.7	7.2	7.7	V
OVERLOAD SHUTDOWN SECTION						
Shutdown threshold voltage	VTH(SD,FB)	-	2.6	2.8	3.1	V

Electrical Characteristics (Continued)

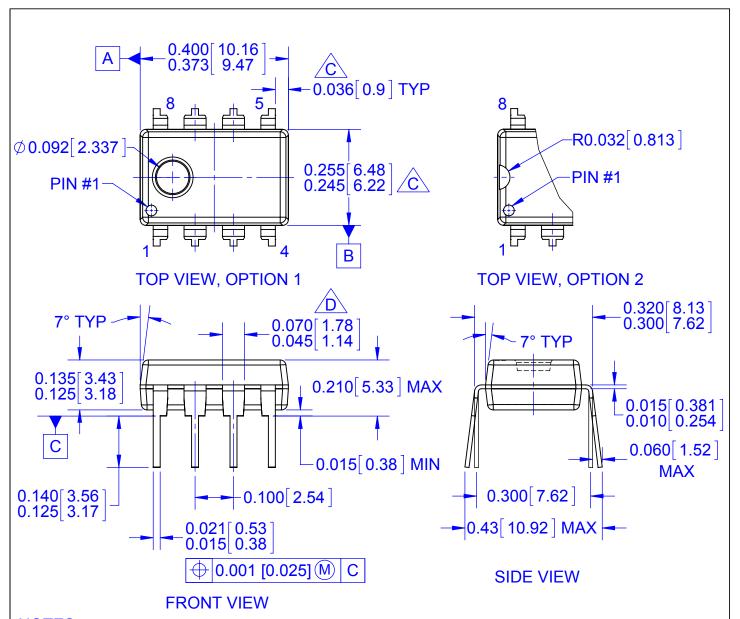
(VCC = 18V, FOSC = 135kHz, TA = 25°C, unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
UNDER VOLTAGE LOCKOUT SECTION						
Start-up threshold voltage	VTH(ST)	-	15.5	16.0	16.5	V
Minimum operating voltage	VOPR(Min)	-	8.20	8.70	9.20	V
Hysteresis	VHYS	-	6.40	7.30	8.20	V
ON/OFF CONTROL SECTION						
Source current(pin8)	ISOURCE(CS)	VPIN8 = 0V	-15	-10	-5	uA
On threshold voltage	VTH(ON)	VPIN8 : OFF->ON	0.45	0.56	0.70	V
Off threshold voltage	VTH(OFF)	VPIN8 : ON -> OFF	0.30	0.42	0.55	V
OUTPUT SECTION						
Low output voltage	VoL	IO = 100mA, VCC = 18V	-	1.3	1.8	V
High output voltage	Voн	I _O = -100mA, V _{CC} = 18V	16.0	16.5	18.0	V
Rise time ^(Note1)	TR	No load	-	50	-	ns
Fall time ^(Note1)	TF	No load	-	50	-	ns
OVERALL					•	
Stand-by current	ISB	VCC = 14V	-	90	150	uA
Operating current	ICC(OPR)	V _{PIN2} = 0V	-	9	15	mA
Power supply current off	ICC(OFF)	VPIN8 = 0V	-	1.1	1.8	mA
Power supply current shutdown	ICC(SD)	V _{PIN8} = 7.6V	-	1.1	1.8	mA


Note:

- 1. These parameters, although guaranteed, are not 100% tested in production.
- 2. Recommend operating condition :
 - Vcc(min) = 12V
 - RT = $3.3 \text{k}\Omega \sim 10 \text{k}\Omega$
 - Oscillation frequency = 5kHz ~ 600kHz
 - Soft start capacitor(Cs) = 0.1uF ~ 1uF

Mechanical Dimensions


Package

Dimensions in millimeters

Ordering Information

Product Number	Package	Operating Temperature
KA7552A	8-DIP	-25 ∼ +85°C
KA7553A	0-011	-23 * 103 0

NOTES:

CONFORMS TO JEDEC MS-001, VARIATION BA

В. CONTROLLING DIMENSIONS ARE IN INCHES. REFERENCE DIMENSIONS ARE IN MILLIMETERS.

DOES NOT INCLUDE MOLD FLASH OR PROTRUSIONS. FAIRCHILD MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCHES OR 0.25MM.

- $\mathsf{D} \setminus \mathsf{DOES}$ NOT INCLUDE DAMBAR PROTRUSIONS. DAMBAR PROTRUSIONS SHALL NOT EXCEED 0.010 INCHES OR 0.25MM.
- DIMENSIONING AND TOLERANCING PER ASME Ε. Y14.5M-2009
- F. DRAWING FILENAME: MKT-N08Erev8

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative