Triacs ## **Silicon Bidirectional Thyristors** Designed for high performance full-wave ac control applications where high noise immunity and high commutating di/dt are required. #### **Features** - Blocking Voltage to 600 V - On-State Current Rating of 12 A RMS at 80°C - Uniform Gate Trigger Currents in Three Quadrants - High Immunity to dV/dt 10 V/µs minimum at 125°C - Minimizes Snubber Networks for Protection - Industry Standard TO-220AB Package - High Commutating dI/dt 1.75 A/ms minimum at 110°C - These are Pb-Free Devices #### **MAXIMUM RATINGS** (T_{.I} = 25°C unless otherwise noted) | , 3 | | , | | | |---|---------------------------------------|--|--------------------|--| | Rating | Symbol | Value | Unit | | | Peak Repetitive Off-State Voltage (Note 1) (T _J = -40 to 110°C, Sine Wave, 50 to 60 Hz, Gate Open) | $V_{ m DRM,} \ V_{ m RRM}$ | | V | | | BTB12–600TW3G | | 600 | | | | On-State RMS Current
(Full Cycle Sine Wave, 60 Hz, T _C = 80°C) | I _{T(RMS)} | 12 | Α | | | Peak Non-Repetitive Surge Current
(One Full Cycle Sine Wave, 60 Hz,
T _C = 25°C) | I _{TSM} | 126 | Α | | | Circuit Fusing Consideration (t = 8.3 ms) | l ² t | 66 | A ² sec | | | Non-Repetitive Surge Peak Off-State
Voltage (T _J = 25°C, t = 10ms) | V _{DSM/}
V _{RSM} | V _{DSM/} V _{RSM}
+100 | V | | | Peak Gate Current (T _J = 110°C, t = 20 μs) | I _{GM} | 4.0 | Α | | | Peak Gate Power (Pulse Width \leq 1.0 μ s, T_C = 80°C) | P _{GM} | 20 | W | | | Average Gate Power (T _J = 110°C) | P _{G(AV)} | 1.0 | W | | | Operating Junction Temperature Range | T _J | -40 to +110 | °C | | | Storage Temperature Range | T _{stg} | -40 to +150 | °C | | | Stronge eveneding Maximum Batings may damage the davice Maximum | | | | | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded. 1 #### Littelfuse.com # TRIACS 12 AMPERES RMS 600 VOLTS | PIN ASSIGNMENT | | | | | |----------------|-----------------|--|--|--| | 1 | Main Terminal 1 | | | | | 2 | Main Terminal 2 | | | | | 3 | Gate | | | | | 4 | Main Terminal 2 | | | | #### **ORDERING INFORMATION** | Device | Package | Shipping | |---------------|-----------------------|-----------------| | BTB12-600TW3G | TO-220AB
(Pb-Free) | 50 Units / Rail | #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Value | Unit | |---|-------------------------------|-----------|------| | Thermal Resistance, Junction-to-Case (AC) Junction-to-Ambient | $R_{ heta JC} \ R_{ heta JA}$ | 1.8
60 | °C/W | | Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 seconds | TL | 260 | °C | #### **ELECTRICAL CHARACTERISTICS** ($T_J = 25^{\circ}C$ unless otherwise noted; Electricals apply in both directions) | Characteristic | | Symbol | Min | Тур | Max | Unit | |--|---|--|-------------------|-------------|-------------------|------| | OFF CHARACTERISTICS | | | l | • | | | | Peak Repetitive Blocking Current $(V_D = Rated V_{DRM}, V_{RRM}; Gate Open)$ | T _J = 25°C
T _J = 110°C | I _{DRM} /
I _{RRM} | <u>-</u> | | 0.005
1.0 | mA | | ON CHARACTERISTICS | | | | | | | | Peak On-State Voltage (Note 2) $(I_{TM} = \pm 17 \text{ A Peak})$ | | V _{TM} | - | - | 1.55 | V | | Gate Trigger Current (Continuous dc) (V _D = 12 V, R _L = 30 Ω) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-) | | I _{GT} | 1.2
1.2
1.2 | -
-
- | 5.0
5.0
5.0 | mA | | Holding Current $(V_D = 12 \text{ V}, \text{ Gate Open, Initiating Current} = \pm 100 \text{ mA})$ | | I _H | - | - | 10 | mA | | Latching Current (V_D = 12 V, I_G = 7.5 mA) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-) | | IL | -
-
- | -
-
- | 15
15
15 | mA | | Gate Trigger Voltage (V_D = 12 V, R_L = 30 Ω) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-) | | V _{GT} | 0.5
0.5
0.5 | -
-
- | 1.3
1.3
1.3 | V | | Gate Non-Trigger Voltage (T_J = 110°C)
MT2(+), G(+)
MT2(+), G(-)
MT2(-), G(-) | | V _{GD} | 0.2
0.2
0.2 | -
-
- | -
-
- | V | | DYNAMIC CHARACTERISTICS | | | • | | | • | | Rate of Change of Commutating Current, See Figure 10. (Gate Open, T _J = 110°C, No Snubber) | | (dl/dt) _c | 1.75 | - | _ | A/ms | | Critical Rate of Rise of On–State Current $(T_J = 110^{\circ}\text{C}, f = 120 \text{ Hz}, I_G = 2 \times I_{GT}, \text{tr} \le 100 \text{ ns})$ | | dl/dt | - | - | 45 | A/μs | | Critical Rate of Rise of Off-State Voltage $(V_D = 0.66 \text{ x } V_{DRM}, \text{ Exponential Waveform, Gate Open, } T_J = 125$ | 5°C) | dV/dt | 10 | - | - | V/μs | ^{2.} Indicates Pulse Test: Pulse Width \leq 2.0 ms, Duty Cycle \leq 2%. ## Voltage Current Characteristic of Triacs (Bidirectional Device) | Symbol | Parameter | |------------------|---| | V_{DRM} | Peak Repetitive Forward Off State Voltage | | I _{DRM} | Peak Forward Blocking Current | | V_{RRM} | Peak Repetitive Reverse Off State Voltage | | I _{RRM} | Peak Reverse Blocking Current | | V _{TM} | Maximum On State Voltage | | I _H | Holding Current | #### **Quadrant Definitions for a Triac** All polarities are referenced to MT1. With in-phase signals (using standard AC lines) quadrants I and III are used. 20 P(AV), AVERAGE POWER DISSIPATION (WATTS) 18 180° 16 120° 14 12 10 8 60° 6 2 8 10 6 I_{T(AV)}, AVERAGE ON-STATE CURRENT (AMP) Figure 1. Typical RMS Current Derating Figure 2. On-State Power Dissipation Figure 3. On-State Characteristics Figure 5. Typical Hold Current Variation Figure 6. Typical Gate Trigger Current Variation Figure 7. Typical Gate Trigger Voltage Variation Figure 8. Typical Latching Current Variation Figure 9. Critical Rate of Rise of Off-State Voltage (Exponential Waveform) Note: Component values are for verification of rated (di/dt)_c. See AN1048 for additional information. Figure 10. Simplified Test Circuit to Measure the Critical Rate of Rise of Commutating Current (di/dt)c #### PACKAGE DIMENSIONS TO-220 CASE 221A-07 **ISSUE AA** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. - DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE | | INCHES | | MILLIMETERS | | |-----|--------|-------|-------------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.570 | 0.620 | 14.48 | 15.75 | | В | 0.380 | 0.405 | 9.66 | 10.28 | | С | 0.160 | 0.190 | 4.07 | 4.82 | | D | 0.025 | 0.035 | 0.64 | 0.88 | | F | 0.142 | 0.147 | 3.61 | 3.73 | | G | 0.095 | 0.105 | 2.42 | 2.66 | | Н | 0.110 | 0.155 | 2.80 | 3.93 | | J | 0.014 | 0.022 | 0.36 | 0.55 | | K | 0.500 | 0.562 | 12.70 | 14.27 | | L | 0.045 | 0.060 | 1.15 | 1.52 | | N | 0.190 | 0.210 | 4.83 | 5.33 | | Q | 0.100 | 0.120 | 2.54 | 3.04 | | R | 0.080 | 0.110 | 2.04 | 2.79 | | S | 0.045 | 0.055 | 1.15 | 1.39 | | T | 0.235 | 0.255 | 5.97 | 6.47 | | U | 0.000 | 0.050 | 0.00 | 1.27 | | ٧ | 0.045 | | 1.15 | | | 7 | | 0.080 | | 2 04 | - PIN 1. MAIN TERMINAL 1 - 2. MAIN TERMINAL 2 - GATE - 4. MAIN TERMINAL 2 Littelfuse products are not designed for, and shall not be used for, any purpose (including, without limitation, automotive, military, aerospace, medical, life-saving, life-sustaining or nuclear facility applications, devices intended for surgical implant into the body, or any other application in which the failure or lack of desired operation of the product may result in personal injury, death, or property damage) other than those expressly set forth in applicable Littelfuse product documentation. Warranties granted by Littelfuse shall be deemed void for products used for any purpose not expressly set forth in applicable Littelfuse documentation. Littelfuse shall not be liable for any claims or damages arising out of products used in applications not expressly intended by Littelfuse as set forth in applicable Littelfuse documentation. The sale and use of Littelfuse products is subject to Littelfuse Terms and Conditions of Sale, unless otherwise agreed by Littelfuse. Littelfuse.com